CF2B The least round way 题解

Posted yzx1798106406

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CF2B The least round way 题解相关的知识,希望对你有一定的参考价值。

技术分享图片

都是泪呀。。。↑

题目传送门

题意(直接复制了QWQ)

题目描述

给定由非负整数组成的(n imes n)的正方形矩阵,你需要寻找一条路径:
以左上角为起点,
每次只能向右或向下走,
以右下角为终点 并且,如果我们把沿路遇到的数进行相乘,积应当是最小“round”,换句话说,应当以最小数目的0的结尾.

输入格式

第一行包含一个整数 ((2 leq n leq 1000))(n)为矩阵的规模,接下来的(n)行包含矩阵的元素(不超过(10^9)的非负整数).

输出格式

第一行应包含最小尾0的个数,第二行打印出相应的路径(译注:D为下,R为右)

思路

楼下其实说得蛮清楚了,我主要就是说一下坑。。。
构成末尾是0的只能是(2^a)(5^b)相乘,所得的0的个数为(min(a,b)),所以,只要2、5分别dp一遍,取一下上与左的最小值就好啦。。。最后求路径时递归求一遍就好啦。。。

TLE的小朋友们看这里啦。。。

TLE的小朋友们看这里啦。。。

TLE的小朋友们看这里啦。。。

(重要的事情说三遍)

此题特别会卡时。
比如说一开始预处理每个数是(2^a)(2^b)时,需要将此数不间断地除下去,为什么呢?因为卡常数。。。也许时我RP的原因吧。。。卡了半天,终于卡过去了。。。
具体详见代码:

代码

(我知道你要看这个)

#include<bits/stdc++.h>
using namespace std;//奇丑无比的码风
int n,a[1010][1010],f[2][1010][1010],dp[2][1010][1010];
int ans,qx,qy;
bool ff;
inline int get2(register int x,register int y){
    if(a[x][y]==0){return 0;} //特判
    register int pt=0;
    while(a[x][y]%2==0) ++pt,a[x][y]/=2; //卡常数
    return pt;
}
inline int get5(register int x,register int y){
    if(a[x][y]==0){return 0;} //特判
    register int pt=0;
    while(a[x][y]%5==0) ++pt,a[x][y]/=5; //卡常数
    return pt;
}
inline void print(register int k,register int x,register int y,register int first){
    if(x==1&&y==1) ;
    else if(x==1) print(k,x,y-1,0);
    else if(y==1) print(k,x-1,y,1);
    else if(dp[k][x][y]==dp[k][x-1][y]+f[k][x][y]) print(k,x-1,y,1);
    else print(k,x,y-1,0);
    if(first==6666) return ;
    putchar(first==0?'R':'D'); //一开始在n,n点时不需要输出
    return ;
}
int main(){
    while(cin>>n){
        ff=0;qx=0;qy=0;
        for(register int i=1;i<=n;i++){
            for(register int j=1;j<=n;j++){
                cin>>a[i][j];
                if(a[i][j]==0){
                    qx=i;qy=j;
                    ff=1;
                } 
            }
        }
        for(register int i=1;i<=n;i++){
            for(register int j=1;j<=n;j++){
                f[0][i][j]=get2(i,j);
                f[1][i][j]=get5(i,j);
            }
        }
        memset(dp,63,sizeof(dp));
        for(register int i=1;i<=n;i++)
            for(register int j=1;j<=n;j++){
                dp[0][i][j]=min(dp[0][i][j],dp[0][i-1][j]);
                dp[0][i][j]=min(dp[0][i][j],dp[0][i][j-1]);//从左格子与上格子中取最小值
                if(i==1&&j==1) dp[0][i][j]=0;
                dp[0][i][j]+=f[0][i][j];
            }
        for(register int i=1;i<=n;i++)
            for(register int j=1;j<=n;j++){
                dp[1][i][j]=min(dp[1][i][j],dp[1][i-1][j]);
                dp[1][i][j]=min(dp[1][i][j],dp[1][i][j-1]);//从左格子与上格子中取最小值
                if(i==1&&j==1) dp[1][i][j]=0;
                dp[1][i][j]+=f[1][i][j];
            }
        ans=min(dp[0][n][n],dp[1][n][n]);//初步ans
        if(ans>1&&ff==1){ //特判有0的情况,如果有0,那么答案只有0或1.
            putchar('1');
            putchar('
');
            for(register int i=1;i<qx;i++) putchar('D');
            for(register int i=1;i<qy;i++) putchar('R');
            for(register int i=qx;i<n;i++) putchar('D');
            for(register int i=qy;i<n;i++) putchar('R');
            putchar('
');
        }else{
            cout<<ans;
            putchar('
');
            if(dp[0][n][n]<dp[1][n][n]) print(0,n,n,6666); //分2、5讨论
            else print(1,n,n,6666);
            putchar('
');
        }
    }
    return 0;
}

以上是关于CF2B The least round way 题解的主要内容,如果未能解决你的问题,请参考以下文章

[CF2B] The least round way - dp

2B The least round way

codeforces 2B The least round way

code force 2B The least round way

Codeforces 2B - The least round way

CodeforcesCF 2 B The least round way(dp)