多项式模板整理
Posted emiya-wjk
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了多项式模板整理相关的知识,希望对你有一定的参考价值。
多项式乘法
FFT模板
时间复杂度(O(nlog n))。
模板:
void FFT(Z *a,int x,int K){
static int rev[N],lst;
int n=(1<<x);
if(n!=lst){
for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
lst=n;
}
for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int tmp=i<<1;
Z wn(cos(pi/i),sin(pi*K/i));
for(int j=0;j<n;j+=tmp){
Z w(1,0);
for(int k=0;k<i;k++,w=w*wn){
Z x=a[j+k],y=w*a[i+j+k];
a[j+k]=x+y;a[i+j+k]=x-y;
}
}
}
if(K==-1)for(int i=0;i<n;i++)a[i]/=n;
}
例题:
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<complex>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
typedef complex<double> Z;
const double pi=M_PI;
int rev[N];
void FFT(Z *a,int x,int K){
static int rev[N],lst;
int n=(1<<x);
if(n!=lst){
for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
lst=n;
}
for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int tmp=i<<1;
Z wn(cos(pi/i),sin(pi*K/i));
for(int j=0;j<n;j+=tmp){
Z w(1,0);
for(int k=0;k<i;k++,w=w*wn){
Z x=a[j+k],y=w*a[i+j+k];
a[j+k]=x+y;a[i+j+k]=x-y;
}
}
}
if(K==-1)for(int i=0;i<n;i++)a[i]/=n;
}
Z a[N],b[N];
int main(){
int n=Getint(),m=Getint();
for(int i=0;i<=n;i++)a[i].real()=Getint();
for(int i=0;i<=m;i++)b[i].real()=Getint();
int x=ceil(log2(n+m+1));
for(int i=0;i<(1<<x);i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
FFT(a,x,1),FFT(b,x,1);
for(int i=0;i<(1<<x);i++)a[i]*=b[i];
FFT(a,x,-1);
for(int i=0;i<=n+m;i++)cout<<(int)(a[i].real()+0.5)<<' ';
return 0;
}
NTT模板
时间复杂度(O(nlog n))。
模板:
void NTT(int *a,int x,int K){
static int rev[N],lst;
int n=(1<<x);
if(n!=lst){
for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
lst=n;
}
for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
if(K==-1)wn=ksm(wn,mod-2);
for(int j=0;j<n;j+=tmp){
int w=1;
for(int k=0;k<i;k++,w=(LL)w*wn%mod){
int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
}
}
}
if(K==-1){
int inv=ksm(n,mod-2);
for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
}
}
例题:
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<complex>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
int ret=1;
while(k){
if(k&1)ret=1ll*ret*x%mod;
x=1ll*x*x%mod,k>>=1;
}
return ret;
}
void NTT(int *a,int x,int K){
static int rev[N],lst;
int n=(1<<x);
if(n!=lst){
for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
lst=n;
}
for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
if(K==-1)wn=ksm(wn,mod-2);
for(int j=0;j<n;j+=tmp){
int w=1;
for(int k=0;k<i;k++,w=(LL)w*wn%mod){
int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
}
}
}
if(K==-1){
int inv=ksm(n,mod-2);
for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
}
}
int a[N],b[N];
int main(){
int n=Getint(),m=Getint();
for(int i=0;i<=n;i++)a[i]=Getint();
for(int i=0;i<=m;i++)b[i]=Getint();
int x=ceil(log2(n+m+1));
NTT(a,x,1),NTT(b,x,1);
for(int i=0;i<(1<<x);i++)a[i]=(LL)a[i]*b[i]%mod;
NTT(a,x,-1);
for(int i=0;i<=n+m;i++)cout<<a[i]<<' ';
return 0;
}
常用的模数及其原根
r * 2 ^ k + 1 | r | k | g |
---|---|---|---|
3 | 1 | 1 | 2 |
5 | 1 | 2 | 2 |
17 | 1 | 4 | 3 |
97 | 3 | 5 | 5 |
193 | 3 | 6 | 5 |
257 | 1 | 8 | 3 |
7681 | 15 | 9 | 17 |
12289 | 3 | 12 | 11 |
40961 | 5 | 13 | 3 |
65537 | 1 | 16 | 3 |
786433 | 3 | 18 | 10 |
5767169 | 11 | 19 | 3 |
7340033 | 7 | 20 | 3 |
23068673 | 11 | 21 | 3 |
104857601 | 25 | 22 | 3 |
167772161 | 5 | 25 | 3 |
469762049 | 7 | 26 | 3 |
998244353 | 119 | 23 | 3 |
1004535809 | 479 | 21 | 3 |
2013265921 | 15 | 27 | 31 |
2281701377 | 17 | 27 | 3 |
3221225473 | 3 | 30 | 5 |
75161927681 | 35 | 31 | 3 |
77309411329 | 9 | 33 | 7 |
206158430209 | 3 | 36 | 22 |
2061584302081 | 15 | 37 | 7 |
多项式求逆
前置知识:多项式乘法。
一个多项式有没有逆元完全取决于他的常数项有没有逆元。
时间复杂度(O(nlog n))。
模板:
void Inv(int *f,int *g,int len){
static int A[N];
if(len==1)return g[0]=ksm(f[0],mod-2),void();
Inv(f,g,len>>1),copy(f,f+len,A);
int x=log2(len<<1),n=1<<x;
fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
NTT(A,x,1),NTT(g,x,1);
for(int i=0;i<(1<<x);i++)g[i]=(mod+2-(LL)A[i]*g[i]%mod)*g[i]%mod;
NTT(g,x,-1),fill(g+len,g+n,0);
}
例题
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
int ret=1;
while(k){
if(k&1)ret=(LL)ret*x%mod;
x=(LL)x*x%mod;
k>>=1;
}
return ret;
}
void NTT(int *a,int x,int K){
static int rev[N],lst;
int n=(1<<x);
if(n!=lst){
for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
lst=n;
}
for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
if(K==-1)wn=ksm(wn,mod-2);
for(int j=0;j<n;j+=tmp){
int w=1;
for(int k=0;k<i;k++,w=(LL)w*wn%mod){
int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
}
}
}
if(K==-1){
int inv=ksm(n,mod-2);
for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
}
}
void Inv(int *f,int *g,int len){
static int A[N];
if(len==1)return g[0]=ksm(f[0],mod-2),void();
Inv(f,g,len>>1),copy(f,f+len,A);
int x=log2(len<<1),n=1<<x;
fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
NTT(A,x,1),NTT(g,x,1);
for(int i=0;i<(1<<x);i++)g[i]=(mod+2-(LL)A[i]*g[i]%mod)*g[i]%mod;
NTT(g,x,-1),fill(g+len,g+n,0);
}
int f[N],g[N];
int main(){
int n=Getint(),len=ceil(log2(n));
for(int i=0;i<n;i++)f[i]=(Getint()%mod+mod)%mod;
Inv(f,g,1<<len);
for(int i=0;i<n;i++)cout<<g[i]<<' ';
return 0;
}
多项式开根
前置知识:多项式求逆。
模板:
const int inv2=(mod+1)/2;
void Sqrt(int *f,int *g,int len){
static int A[N],B[N];
if(len==1)return g[0]=sqrt(f[0]),void();
Sqrt(f,g,len>>1),Inv(g,B,len);
copy(f,f+len,A);
int x=log2(len<<1),n=1<<x;
fill(A+len,A+n,0),fill(B+len,B+n,0),fill(g+(len>>1),g+n,0);
NTT(A,x,1),NTT(B,x,1),NTT(g,x,1);
for(int i=0;i<n;i++)g[i]=(g[i]+(LL)A[i]*B[i]%mod)%mod*inv2%mod;
NTT(g,x,-1),fill(g+len,g+n,0);
}
应用:
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
int ret=1;
while(k){
if(k&1)ret=(LL)ret*x%mod;
x=(LL)x*x%mod;
k>>=1;
}
return ret;
}
void NTT(int *a,int x,int K){
static int rev[N],lst;
int n=(1<<x);
if(n!=lst){
for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
lst=n;
}
for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
if(K==-1)wn=ksm(wn,mod-2);
for(int j=0;j<n;j+=tmp){
int w=1;
for(int k=0;k<i;k++,w=(LL)w*wn%mod){
int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
}
}
}
if(K==-1){
int inv=ksm(n,mod-2);
for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
}
}
void Inv(int *f,int *g,int len){
static int A[N];
if(len==1)return g[0]=ksm(f[0],mod-2),void();
Inv(f,g,len>>1),copy(f,f+len,A);
int x=log2(len<<1),n=1<<x;
fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
NTT(A,x,1),NTT(g,x,1);
for(int i=0;i<(1<<x);i++)g[i]=(mod+2-(LL)A[i]*g[i]%mod)*g[i]%mod;
NTT(g,x,-1),fill(g+len,g+n,0);
}
const int inv2=(mod+1)/2;
void Sqrt(int *f,int *g,int len){
static int A[N],B[N];
if(len==1)return g[0]=sqrt(f[0]),void();
Sqrt(f,g,len>>1),Inv(g,B,len);
copy(f,f+len,A);
int x=log2(len<<1),n=1<<x;
fill(A+len,A+n,0),fill(B+len,B+n,0),fill(g+(len>>1),g+n,0);
NTT(A,x,1),NTT(B,x,1),NTT(g,x,1);
for(int i=0;i<n;i++)g[i]=(g[i]+(LL)A[i]*B[i]%mod)%mod*inv2%mod;
NTT(g,x,-1),fill(g+len,g+n,0);
}
int f[N],g[N];
int main(){
int n=Getint();
for(int i=0;i<n;i++)f[i]=Getint();
int len=ceil(log2(n));
Sqrt(f,g,1<<len);
for(int i=0;i<n;i++)cout<<g[i]<<' ';
return 0;
}
多项式求导
已知多项式(A(x)),求:
[
frac {dA(x)}{dx}
]
思路:多项式的每一项都是个简单的幂函数,那么直接对每一项求导就可以了。
void Der(int *f,int *g,int len){
for(int i=0;i<len;i++)g[i]=(LL)f[i+1]*(i+1)%mod;
g[len-1]=0;
}
多项式求积分
已知多项式(A(x)),求:
[
int A(x)dx
]
思路:同上,直接对每一项积分,(int ax^ndx=frac a{n+1}x^{n+1}),默认积分后常数为(0)。
void Int(int *f,int *g,int len){
for(int i=1;i<len;i++)g[i]=(LL)f[i-1]*ksm(i,mod-2)%mod;
g[0]=0;
}
多项式求对数
前置知识:多项式求逆+多项式求导+多项式积分。
模板:
void Ln(int *f,int *g,int len){
static int A[N],B[N];
Der(f,A,len),Inv(f,B,len);
int x=log2(len<<1),n=(1<<x);
fill(A+len,A+n,0),fill(B+len,B+n,0);
NTT(A,x,1),NTT(B,x,1);
for(int i=0;i<n;i++)A[i]=(LL)A[i]*B[i]%mod;
NTT(A,x,-1),Int(A,g,len);
}
例题
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
int ret=1;
while(k){
if(k&1)ret=(LL)ret*x%mod;
x=(LL)x*x%mod;
k>>=1;
}
return ret;
}
void Der(int *f,int *g,int len){
for(int i=0;i<len;i++)g[i]=(LL)f[i+1]*(i+1)%mod;
g[len-1]=0;
}
void Int(int *f,int *g,int len){
for(int i=1;i<len;i++)g[i]=(LL)f[i-1]*ksm(i,mod-2)%mod;
g[0]=0;
}
void NTT(int *a,int x,int K){
static int rev[N],lst;
int n=(1<<x);
if(n!=lst){
for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
lst=n;
}
for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
if(K==-1)wn=ksm(wn,mod-2);
for(int j=0;j<n;j+=tmp){
int w=1;
for(int k=0;k<i;k++,w=(LL)w*wn%mod){
int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
}
}
}
if(K==-1){
int inv=ksm(n,mod-2);
for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
}
}
void Inv(int *f,int *g,int len){
static int A[N];
if(len==1)return g[0]=ksm(f[0],mod-2),void();
Inv(f,g,len>>1),copy(f,f+len,A);
int x=log2(len<<1),n=1<<x;
fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
NTT(A,x,1),NTT(g,x,1);
for(int i=0;i<(1<<x);i++)g[i]=(mod+2-(LL)A[i]*g[i]%mod)*g[i]%mod;
NTT(g,x,-1),fill(g+len,g+n,0);
}
void Ln(int *f,int *g,int len){
static int A[N],B[N];
Der(f,A,len),Inv(f,B,len);
int x=log2(len<<1),n=(1<<x);
fill(A+len,A+n,0),fill(B+len,B+n,0);
NTT(A,x,1),NTT(B,x,1);
for(int i=0;i<n;i++)A[i]=(LL)A[i]*B[i]%mod;
NTT(A,x,-1),Int(A,g,len);
}
int f[N],g[N];
int main(){
int n=Getint();
for(int i=0;i<n;i++)f[i]=Getint();
int len=ceil(log2(n));
Ln(f,g,1<<len);
for(int i=0;i<n;i++)cout<<g[i]<<' ';
return 0;
}
多项式求自然对数为底的指数函数
前置知识:多项式求对数。
模板:
void Exp(int *f,int *g,int len){
static int A[N];
if(len==1)return g[0]=1,void();
int x=log2(len<<1),n=1<<x;
Exp(f,g,len>>1);
fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
Ln(g,A,len);
A[0]=(f[0]+1-A[0]+mod)%mod;
for(int i=1;i<len;i++)A[i]=(f[i]-A[i]+mod)%mod;
NTT(A,x,1),NTT(g,x,1);
for(int i=0;i<n;i++)g[i]=(LL)g[i]*A[i]%mod;
NTT(g,x,-1),fill(g+len,g+n,0);
}
例题:
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
int ret=1;
while(k){
if(k&1)ret=(LL)ret*x%mod;
x=(LL)x*x%mod;
k>>=1;
}
return ret;
}
void Der(int *f,int *g,int len){
for(int i=0;i<len;i++)g[i]=(LL)f[i+1]*(i+1)%mod;
g[len-1]=0;
}
void Int(int *f,int *g,int len){
for(int i=1;i<len;i++)g[i]=(LL)f[i-1]*ksm(i,mod-2)%mod;
g[0]=0;
}
void NTT(int *a,int x,int K){
static int rev[N],lst;
int n=(1<<x);
if(n!=lst){
for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
lst=n;
}
for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
if(K==-1)wn=ksm(wn,mod-2);
for(int j=0;j<n;j+=tmp){
int w=1;
for(int k=0;k<i;k++,w=(LL)w*wn%mod){
int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
}
}
}
if(K==-1){
int inv=ksm(n,mod-2);
for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
}
}
void Inv(int *f,int *g,int len){
static int A[N];
if(len==1)return g[0]=ksm(f[0],mod-2),void();
Inv(f,g,len>>1),copy(f,f+len,A);
int x=log2(len<<1),n=1<<x;
fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
NTT(A,x,1),NTT(g,x,1);
for(int i=0;i<(1<<x);i++)g[i]=(mod+2-(LL)A[i]*g[i]%mod)*g[i]%mod;
NTT(g,x,-1),fill(g+len,g+n,0);
}
void Ln(int *f,int *g,int len){
static int A[N],B[N];
Der(f,A,len),Inv(f,B,len);
int x=log2(len<<1),n=(1<<x);
fill(A+len,A+n,0),fill(B+len,B+n,0);
NTT(A,x,1),NTT(B,x,1);
for(int i=0;i<n;i++)A[i]=(LL)A[i]*B[i]%mod;
NTT(A,x,-1),Int(A,g,len);
}
void Exp(int *f,int *g,int len){
static int A[N];
if(len==1)return g[0]=1,void();
int x=log2(len<<1),n=1<<x;
Exp(f,g,len>>1);
fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
Ln(g,A,len);
A[0]=(f[0]+1-A[0]+mod)%mod;
for(int i=1;i<len;i++)A[i]=(f[i]-A[i]+mod)%mod;
NTT(A,x,1),NTT(g,x,1);
for(int i=0;i<n;i++)g[i]=(LL)g[i]*A[i]%mod;
NTT(g,x,-1),fill(g+len,g+n,0);
}
int f[N],g[N];
int main(){
int n=Getint();
for(int i=0;i<n;i++)f[i]=Getint();
int len=ceil(log2(n));
Exp(f,g,1<<len);
for(int i=0;i<n;i++)cout<<g[i]<<' ';
return 0;
}
多项式除法
例题
以上是关于多项式模板整理的主要内容,如果未能解决你的问题,请参考以下文章
解题报告多项式求值与插值(拉格朗日插值)(ACM / OI)