sklearn中的朴素贝叶斯模型及其应用
Posted huang201606050002
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了sklearn中的朴素贝叶斯模型及其应用相关的知识,希望对你有一定的参考价值。
from sklearn import datasets iris = datasets.load_iris() from sklearn.naive_bayes import GaussianNB #高斯 gnb =GaussianNB() #构造 pred =gnb.fit(iris.data,iris.target) #拟合 y_pred =pred.predict(iris.data) #预测 print(iris.data.shape[0],(iris.target !=y_pred).sum()) from sklearn import datasets iris = datasets.load_iris() from sklearn.naive_bayes import BernoulliNB #贝叶斯模型 gnb =BernoulliNB() #构造 pred =gnb.fit(iris.data,iris.target) #拟合 y_pred =pred.predict(iris.data) #预测 print(iris.data.shape[0],(iris.target !=y_pred).sum()) from sklearn import datasets iris = datasets.load_iris() from sklearn.naive_bayes import MultinomialNB #多项式模型 gnb =MultinomialNB() #构造 pred =gnb.fit(iris.data,iris.target) #拟合 y_pred =pred.predict(iris.data) #预测 print(iris.data.shape[0],(iris.target !=y_pred).sum()) from sklearn.naive_bayes import GaussianNB ##交叉验证(高斯) from sklearn.model_selection import cross_val_score gnb =GaussianNB() scores= cross_val_score(gnb,iris.data,iris.target,cv=10) print("Acouracy:%.3f"%scores.mean())
from sklearn.naive_bayes import GaussianNB ##交叉验证(高斯) from sklearn.model_selection import cross_val_score gnb =GaussianNB() scores= cross_val_score(gnb,iris.data,iris.target,cv=10) print("Acouracy:%.3f"%scores.mean())
from sklearn.naive_bayes import MultinomialNB ##交叉验证(多项式) from sklearn.model_selection import cross_val_score gnb =MultinomialNB() scores= cross_val_score(gnb,iris.data,iris.target,cv=10) print("Acouracy:%.3f"%scores.mean())
import csv file_path = r"D:SMSSPamCollection.txt" sms=open(file_path,‘r‘,encoding=‘utf-8‘) sms_data=[] sms_label=[] csv_reader=csv.reader(sms,delimiter=‘ ‘) for line in csv_reader: sms_label.append(line[0]) sms_data.append(line[1]) sms.close() sms_data
以上是关于sklearn中的朴素贝叶斯模型及其应用的主要内容,如果未能解决你的问题,请参考以下文章