pytorch人脸识别——自己制作数据集
Posted cunyusup
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pytorch人脸识别——自己制作数据集相关的知识,希望对你有一定的参考价值。
这是一篇面向新手的博文:因为本人也是新手,记录一下自己在做这个项目遇到的大大小小的坑。
按照下面的例子写就好了
import torch as t from torch.utils import data import os from PIL import Image import numpy as np from torchvision import transforms as T from torch import nn from torch.autograd import Variable from torch.optim import Adam from torchvision.utils import make_grid from torch.utils.data import DataLoader transform = T.Compose( #归一化 [ T.Resize(1000), T.CenterCrop(1000), T.ToTensor(), T.Normalize(mean=[.5,.5,.5],std=[.5,.5,.5]) ] ) #在这个class里重写你的数据集 class twoface(data.Dataset): def __init__(self,root,transforms=None): imgs = os.listdir(root) self.imgs = [os.path.join(root,img) for img in imgs] self.transforms = transforms def __getitem__(self, index): img_path = self.imgs[index] label = 1 if ‘empty‘ in img_path.split(‘/‘)[-1] else 0 #定义标签:图片名中有label data = Image.open(img_path) if self.transforms: data = self.transforms(data) return data,label def __len__(self): return len(self.imgs) dataset = twoface(‘./data1/‘,transforms=transform) #transform 用在这里 data_loader_train = t.utils.data.DataLoader(dataset=dataset, batch_size=1, #batch_size 要=1 shuffle=True, num_workers=0) data_loader_test = t.utils.data.DataLoader(dataset=dataset, batch_size=1, shuffle=True, num_workers=0) class Model(t.nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = t.nn.Sequential(t.nn.Conv2d(3, 6, kernel_size=20, stride=10, padding=0), #模型这块如果你图片格式不对的话要重新算 t.nn.ReLU(), t.nn.Conv2d(6, 10, kernel_size=6, stride=1, padding=0), t.nn.ReLU(), t.nn.Conv2d(10, 16, kernel_size=5, stride=1, padding=0), t.nn.ReLU(), t.nn.MaxPool2d(stride=5, kernel_size=5)) # self.dense = t.nn.Sequential(t.nn.Linear(18 * 18 * 16, 33), t.nn.ReLU(), t.nn.Linear(33, 2) ) def forward(self, x): x = self.conv1(x) x = x.view(-1,18 * 18 * 16) x = self.dense(x) return x model = Model().cuda() print(model) cost = t.nn.CrossEntropyLoss() optimizer = t.optim.Adam(model.parameters()) n_epochs = 5 for epoch in range(n_epochs): running_loss = 0.0 running_correct = 0 print("Epoch {}/{}".format(epoch, n_epochs)) print("-" * 10) for datas in data_loader_train: realone,label = datas realone, label = Variable(realone).cuda(), Variable(label).cuda() output = model(realone) _,pred = t.max(output.data,1) optimizer.zero_grad() loss = cost(output, label) loss.backward() optimizer.step() running_loss += loss.data[0] running_correct += t.sum(pred == label) testing_correct = 0 for datak in data_loader_test: X_test, y_test = datak X_test, y_test = Variable(X_test).cuda(), Variable(y_test).cuda() outputs = model(X_test) _, pred = t.max(outputs.data, 1) testing_correct += t.sum(pred == y_test.data) print( "Loss is:{:.4f}, Train Accuracy is:{:.4f}%, Test Accuracy is:{:.4f}".format(running_loss / len(dataset), 100 * running_correct / len( dataset), 100 * testing_correct / len( dataset))) t.save(model, ‘ifempty.pkl‘)
运行model中的坑
from pylab import plt import torch as t from torch.autograd import Variable from torchvision.utils import make_grid from PIL import Image import numpy as np import os class Model(t.nn.Module): #如果不把这些乱七八糟的class和transform 重写一遍会出错 def __init__(self): super(Model, self).__init__() self.conv1 = t.nn.Sequential(t.nn.Conv2d(3, 6, kernel_size=20, stride=10, padding=0), t.nn.ReLU(), t.nn.Conv2d(6, 10, kernel_size=6, stride=1, padding=0), t.nn.ReLU(), t.nn.Conv2d(10, 16, kernel_size=5, stride=1, padding=0), t.nn.ReLU(), t.nn.MaxPool2d(stride=5, kernel_size=5)) # self.dense = t.nn.Sequential(t.nn.Linear(18 * 18 * 16, 33), t.nn.ReLU(), t.nn.Linear(33, 2) ) def forward(self, x): x = self.conv1(x) x = x.view(-1,18 * 18 * 16) x = self.dense(x) return x lst = os.listdir(‘./recv/‘) flag = 0 for i in range(len(lst)): img=Image.open(‘./recv/‘ + lst[i]) from torchvision import transforms as T trans= T.Compose( [ T.Resize(1000), T.CenterCrop(1000), T.ToTensor(), T.Normalize(mean=[.5,.5,.5],std=[.5,.5,.5]) ] ) a=trans(img) b = a.numpy() x = np.array([b]) y = t.Tensor(x) fix_noise = Variable(y) fix_noise = fix_noise.cuda() net = t.load(‘ifempty.pkl‘) output = net(fix_noise) _,pred = t.max(output.data,1) if pred.data.item() == 1: print(‘空‘) flag = 1 else: flag = 0 if flag == 0: netj = t.load(‘ifzwh.pkl‘) output2 = netj(fix_noise) _, pred2 = t.max(output2.data, 1) if pred2.data.item() == 0: print(‘xxx‘) else: print(‘其他人‘)
以上是关于pytorch人脸识别——自己制作数据集的主要内容,如果未能解决你的问题,请参考以下文章
戴眼镜检测和识别2:Pytorch实现戴眼镜检测和识别(含戴眼镜数据集和训练代码)