POJ3686 The Windy's

Posted mrclr

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ3686 The Windy's相关的知识,希望对你有一定的参考价值。

嘟嘟嘟


刚做费用流,思路完全不对呀……
应该这么想(应该说敢这么想):这道题的关键在于怎么体现这个玩具是第几个加工的,只有这才能求出他的加工时间(因为加工时间包括等待时间)。
但等待时间不好求,因此要换个思路想:加工这个玩具会对别的玩具的加工时间造成多少影响。
假设三个玩具(i, j, k)依次在同一个工厂中被加工出来,那么总时间(T = t_i + (t_i + t_j) + (t_i + t_j + t_k) = 3 * t_i + 2 * t_j + t_k)。所以一个玩具对总时间的贡献是:加工次序(*)制作时间。
那么建图就有思路了:把每一个工厂拆成(n)个点,代表加工次序。对于每一个玩具(i),向每一个工厂(j)的每一个加工次序的点(k)连一条容量为1,费用为(k * cost_{i, j})的边。然后从源点向玩具连边,从每一个拆开的的工厂向汇点连边。
跑费用流。
最后要提醒的是算好空间。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("") 
#define space putchar(‘ ‘)
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int N = 50;
const int maxn = N + N * N + 5;
const int maxe = N + N * N + N * N * N + 5;
inline ll read()
{
  ll ans = 0;
  char ch = getchar(), last = ‘ ‘;
  while(!isdigit(ch)) last = ch, ch = getchar();
  while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - ‘0‘, ch = getchar();
  if(last == ‘-‘) ans = -ans;
  return ans;
}
inline void write(ll x)
{
  if(x < 0) x = -x, putchar(‘-‘);
  if(x >= 10) write(x / 10);
  putchar(x % 10 + ‘0‘);
}

int n, m, s, t, a[N + 5][N + 5];
struct Edge
{
  int nxt, from, to, cap, c;
}e[maxe << 1];
int head[maxn], ecnt = -1;
void addEdge(int x, int y, int w, int c)
{
  e[++ecnt] = (Edge){head[x], x, y, w, c};
  head[x] = ecnt;
  e[++ecnt] = (Edge){head[y], y, x, 0, -c};
  head[y] = ecnt;
}

bool in[maxn];
int dis[maxn], pre[maxn], flow[maxn];
bool spfa()
{
  Mem(in, 0); Mem(dis, 0x3f);
  in[s] = 1; dis[s] = 0; flow[s] = INF;
  queue<int> q; q.push(s);
  while(!q.empty())
    {
      int now = q.front(); q.pop(); in[now] = 0;
      for(int i = head[now], v; i != -1; i = e[i].nxt)
    {
      v = e[i].to;
      if(e[i].cap > 0 && dis[now] + e[i].c < dis[v])
        {
          dis[v] = dis[now] + e[i].c;
          pre[v] = i;
          flow[v] = min(flow[now], e[i].cap);
          if(!in[v]) in[v] = 1, q.push(v);
        }
    }
    }
  return dis[t] != INF;
}
int minCost = 0;
void update()
{
  int x = t;
  while(x != s)
    {
      int i = pre[x];
      e[i].cap -= flow[t];
      e[i ^ 1].cap += flow[t];
      x = e[i].from;
    }
  minCost += flow[t] * dis[t];
}

void MCMF()
{
  while(spfa()) update();
}

int main()
{
  int T = read();
  while(T--)
    {
      Mem(head, -1); ecnt = -1; minCost = 0;
      n = read(); m = read(); s = 0, t = n + n * m + 1;
      for(int i = 1; i <= n; ++i)
    for(int j = 1; j <= m; ++j) a[i][j] = read();
      for(int i = 1; i <= n; ++i)
    {
      addEdge(s, i, 1, 0);
      for(int j = 1; j <= m; ++j)
        for(int k = 1; k <= n; ++k)
          addEdge(i, j * n + k, 1, k * a[i][j]);
    }
      for(int i = n + 1; i <= n * m + n; ++i) addEdge(i, t, 1, 0);
      MCMF();
      printf("%.6f
", (db)minCost / (db)n);
    }
  return 0;
}









以上是关于POJ3686 The Windy's的主要内容,如果未能解决你的问题,请参考以下文章

POJ 3686 The Windy's (最小费用流或最佳完全匹配)

POJ3686 The Windy's

POJ-3686 The Windy's KM算法 拆点题

POJ 3686 The Windy's | 最小费用最大流

poj 3686 Priest John's Busiest Day

二分图匹配入门专题1poj3686 km+思维建图