Python高级用法总结--(列表推导式,迭代器,生成器,装饰器)

Posted xushuhai

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python高级用法总结--(列表推导式,迭代器,生成器,装饰器)相关的知识,希望对你有一定的参考价值。

列表推导式(list comprehensions)

场景1:将一个三维列表中所有一维数据为a的元素合并,组成新的二维列表。

最简单的方法:新建列表,遍历原三维列表,判断一维数组是否为a,若为a,则将该元素append至新列表中。

缺点:代码太繁琐,对于Python而言,执行速度会变慢很多。

针对场景1,我们首先应该想到列表解析式来处理:

lista = [item for item in array if item[0] == ‘a‘]

 那么,什么是列表解析式?

官方解释:列表解析式是Python内置的非常简单却强大的可以用来创建list的生成式

可以看到,使用列表解析式的写法更加简短,除此之外,因为是Python内置的用法,底层使用c语言实现,相较于编写Python代码而言,运行速度更快。

场景2:对于一个列表,既要遍历索引又要遍历元素

这里可以使用Python內建函数enumerate,在循环中更好的获取得到索引

array = [‘I‘, "love‘, ‘Python‘]
for i element in  enumerate(array):
        array[i] = ‘%d:%s‘%(i, element)

可以使用列表推导式对其进行重构

def getitem(index, element):
        return ‘%d:%s‘%(index, element)

array = [‘I‘, ‘love‘, ‘Python‘]

arrayIndex = [getitem(index, element) for indexm element in enumerate(array)]
  

总结:如果要对现有可迭代对象做一下处理,然后生成新的列表,使用列表推导式将是最便捷的方法。

迭代器和生成器

迭代器(Iterator)

这的迭代器可以指for循环,在python中,对于像list,dict和文件等而言,都可以使用for循环,但是它们并不是迭代器,它们属于可迭代对象。

什么可迭代对象?

最简单的解释:可以使用for...in...语句进行循环的对象,就是可迭代对象(Iterable),可以使用isinstance()方法进行判断。

from collections import Iterable
type = isinstance(‘python‘, Iterable)
print type

 

什么是迭代器?

迭代器指的是可以使用next()方法来回调的对象,可以对可迭代对象使用iter()方法,将其转换为迭代器。

temp=iter([1, 2, 3])
print type(temp)
print next(temp)

  

此时temp就是一个迭代器,所以说,迭代器基于两个方法:

  • next:返回下一个项目
  • iter:返回迭代器本身

可以理解为可被next()函数调用并不断返回下一个值的对象就是迭代器,在定义一个装饰器时将需要同时定义这两个方法。

迭代器的优势

在构建迭代器时,不是将所有元素一次性的加载,而是等调用next方法时返回元素,所有不需要考虑内存的问题。

迭代器应用场景

  • 数列的数据规模巨大
  • 数列有规律,但是不能使用列表推导式描述

生成器

生成器是一种高级迭代器,使得需要返回一系列元素的函数所需的代码更加的简单和高效(不像创建迭代器代码那般冗长)

生成器函数

生成器函数基于yield指令,可以暂停一个函数并返回中间结果。当需要一个将返回一个序列或在循环中执行的函数时,就可以使用生成器,因为当这些元素被传递到另一个函数中进行后续处理时,一次返回一个元素可以有效的提升整体性能。

常见的应用场景是使用生成器生成数据流缓冲区

生成器表达式

生成式表达式是一种实现生成器的便捷方式,将列表推导式的中括号替换为圆括号。

和列表推导式的区别:列表生成式可以直接创建一个表,但是生成器表达式是一种边循环边计算,使得列表的元素可以在循环过程中一个个的推算出来,不需要创建完整的列表,从而节省了大量的空间。

g = (x*x for x in range(10))

 

总结:生成器是一种高级迭代器,生成器的优点是延迟计算,一次返回一个结果,这样非常适用于大数据量的计算。但是,使用生成器必须要注意的一点是:生成器只能遍历一次。

lambda 表达式(匿名函数)

lambda表达式可以省去定义函数的过程,让代码更加的简洁,适用于简单函数,编写处理更大业务的函数需要使用def定义

lambda表达式常用搭配map(), reduce(), filter() 函数使用

  • map():map函数接受两个参数,一个是函数,一个是序列,其中函数可以接收一个或者多个参数。map将传入的函数依次作用于序列中的每一个元素,将结果作为新的列表返回。# 将一个列表中的数字转换为字符串map(str, [1, 2, 3, 4, 5, 6])
  • reduce():函数接收两个参数,一个是函数,另一个是序列,但是,函数必须接收两个参数reduce把结果继续和序列的下一个元素做累积计算,其效果就是reduce(f, [x1, x2l x3, x4]) = f(f(f(x1, x2),x3),x4)
  • filter():该函数用于筛选,将传入的函数,依次作用于每个元素,然后根据函数的返回值是True还是False,决定是留下还是丢弃该元素

装饰器

装饰器本质是一个Python函数,它可以让其它函数在没有任何代码变动的情况下增加额外功能。有了装饰器,我们可以抽离出大量和函数功能本身无关的雷同代码并继续重用。经常用于具有切面需求的场景:包括插入日志,性能测试,事物处理,缓存和权限校验等。

场景:计算一个函数的执行时间

一种方法就是定义一个函数,用来专门计算函数的运行时间,然后运行时间计算完成之后再处理真正的业务代码,代码如下:

import time
def get_time(func):
      startTime = time.time()
      func()
      endTime = time.time()
      processTime = (endTime - startTime) * 1000
      print "The function timing is %d ms" %processTime

def myfunc():
      print "start func"
      time.sleep(0.8)
      print "end func"

get_time(myfunc)
myfunc()

 

但是这段代码的逻辑破坏了原有的代码逻辑,就是对所有func函数的调用都需要使用get_time(func)来实现。

那么,有没有更好的展示方式呢?当然有,那就是装饰器。

编写简单的装饰器

结合上述实例,编写装饰器:

def get_time(func):
        def wrapper():
                startTime = time.time()
                func()
                endTime = time.time()
                processTime = (endTime - startTime) * 1000
                print "The function timing is %f ms" %processTime
        return wrapper

print "myfunc is:", myfunc.__name__
myfunc = get_time(myfunc)
print "myfunc is:", myfunc.__name__
myfunc()

 

这样,一个简单的完整的装饰器就实现了,可以看到,装饰器并没有影响函数的执行逻辑和调用。在Python中,可以使用“@”语法糖来精简装饰器的代码,将上例更改为:

@get_time
def myfunc():
        print "start func"
        time.sleep(0.8)
        print "end func"

print "myfunc is: ", myfunc.__name__
myfunc()

**装饰器的调用顺序**

装饰器可以叠加使用,若多个装饰器同时装饰一个函数,那么装饰器的调用顺序和@语法糖的声明顺序相反,也就是:

@decorator1
@decorator2
def func():
        pass

等效于

func = decorator1(decorator2(func()))

被装饰的函数带参数

上述实例中,myfunc()是没有参数的,那如果添加参数的话,装饰器改如何编写呢?

#被装饰的函数带参数
def get_time3(func):
        def wrapper(*args, **kwargs):
                startTime = time.time()
                func(*args, **kwargs)
                endTime = time.time()
                processTime = (endTime - startTime) * 1000
                print "The function timing is %f ms" %processTime
        return wrapper

@get_time3
def myfunc2(a):
        print "start func"
        print a
        time.sleep(0.8)
        print "end func"

a = "test"
myfunc2(a)

带参数的装饰器

装饰器有很大的灵活性,它本身支持参数,例如在上述实例中,@get_time装饰器唯一的参数就是执行业务的函数,当然也可以在装饰器中添加参数,加以逻辑判断。

内置装饰器

Python中,常见的类装饰器包括:@staticmathod、@classmethod、@property

  • @staticmethod:类的静态方法,跟成员方法的区别是没有self参数,并且可以在累不进行实例化的情况下调用
  • @classmethod:跟成员方法的区别是接收的第一个参数不是self,而是cls(当前累的具体类型)
  • @property:表示可以直接通过类实例直接访问的信息。

 

 

 

 

 

 

 

 

 

 

 

  

 

以上是关于Python高级用法总结--(列表推导式,迭代器,生成器,装饰器)的主要内容,如果未能解决你的问题,请参考以下文章

迭代器与生成器

番外.1.Python高级用法

python 迭代器 生成器 列表推导式

Python---迭代器,生成器,列表推导式

Python3基础-高级用法

一起看看Python中的迭代器&生成器