[CQOI2006]凸多边形(半平面相交)
Posted mrclr
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[CQOI2006]凸多边形(半平面相交)相关的知识,希望对你有一定的参考价值。
嘟嘟嘟
本来我要写feng shui这道题的。然后网上都说什么半平面相交,于是我还得现学这个东西,就来刷这道模板题了。
所谓的半平面相交和高中数学的分数规划特别像。比如这道题,把每一条边看成一条有向直线,则合法的范围都是直线的右半部分,最后求交集。大概是每一次都取一半,所以就叫半平面相交吧。
(O(n ^ 2))的做法很简单,我也只会(O(n ^ 2))的。枚举每一条边,然后用这条边去切当前算出来的图形。
具体怎么切?一句话就是把这条直线左边的点全部扔掉。
放个伪代码就明白了:
for 每条边ai ai+1
if (ai在AB右边)
把ai加入答案
if (ai+1在AB左边) 把交点加入答案
else if(ai+1在AB右边) 把交点加入答案
至于判断左右,用叉积求又向面积就行了。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(‘ ‘)
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 5e5 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ‘ ‘;
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch)) {ans = (ans << 1) + (ans << 3) + ch - ‘0‘; ch = getchar();}
if(last == ‘-‘) ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar(‘-‘);
if(x >= 10) write(x / 10);
putchar(x % 10 + ‘0‘);
}
int n, m, cnt = 0;
struct Point
{
db x, y;
Point operator - (const Point& oth)const
{
return (Point){x - oth.x, y - oth.y};
}
db operator * (const Point& oth)const
{
return x * oth.y - oth.x * y;
}
Point operator * (const db& d)const
{
return (Point){x * d, y * d};
}
}p[maxn], a[maxn];
int tot = 0;
Point b[maxn];
db cross(Point A, Point B, Point C)
{
return (B - A) * (C - A);
}
void addCross(Point A, Point B, Point C, Point D)
{
db s1 = (C - A) * (D - A), s2 = (D - B) * (C - B);
b[++tot] = A - (A - B) * (s1 / (s1 + s2));
}
void cut(Point A, Point B)
{
tot = 0;
a[cnt + 1] = a[1];
for(int i = 1; i <= cnt; ++i)
{
if(cross(A, B, a[i]) >= 0)
{
b[++tot] = a[i];
if(cross(A, B, a[i + 1]) < 0) addCross(A, B, a[i], a[i + 1]);
}
else if(cross(A, B, a[i + 1]) > 0) addCross(A, B, a[i], a[i + 1]);
}
for(int i = 1; i <= tot; ++i) a[i] = b[i];
cnt = tot;
}
int main()
{
n = read(); m = read();
for(int i = 1; i <= m; ++i) a[i].x = read(), a[i].y = read();
cnt = m; n--;
while(n--)
{
m = read();
for(int i = 1; i <= m; ++i) p[i].x = read(), p[i].y = read();
p[m + 1] = p[1];
for(int i = 1; i <= m; ++i) cut(p[i], p[i + 1]);
}
a[cnt + 1] = a[1];
db ans = 0;
for(int i = 1; i <= cnt; ++i) ans += a[i] * a[i + 1];
printf("%.3lf
", ans / 2);
return 0;
}
以上是关于[CQOI2006]凸多边形(半平面相交)的主要内容,如果未能解决你的问题,请参考以下文章