LinkedHashMap实现LRU算法
Posted anxinliang
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LinkedHashMap实现LRU算法相关的知识,希望对你有一定的参考价值。
LinkedHashMap特别有意思,它不仅仅是在HashMap上增加Entry的双向链接,它更能借助此特性实现保证Iterator迭代按照插入顺序(以insert模式创建LinkedHashMap)或者实现LRU(Least Recently Used最近最少算法,以access模式创建LinkedHashMap)。
下面是LinkedHashMap的get方法的代码
public V get(Object key) { Entry<K,V> e = (Entry<K,V>)getEntry(key); if (e == null) return null; e.recordAccess(this); return e.value; }
其中有一段:e.recordAccess(this)。下面我们进入Entry的定义
void recordAccess(HashMap<K,V> m) { LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m; if (lm.accessOrder) { lm.modCount++; remove(); addBefore(lm.header); } }
这里的addBefore(lm.header)是做什么呢?再看
private void addBefore(Entry<K,V> existingEntry) { after = existingEntry; before = existingEntry.before; before.after = this; after.before = this; }
从这里可以看到了,addBefore(lm.header)是把当前访问的元素挪到head的前面,即最近访问的元素被放到了链表头,如此要实现LRU算法只需要从链表末尾往前删除就可以了,多么巧妙的方法。
在看到LinkedHashMap之前,我以为实现LRU算法是在每个元素内部维护一个计数器,访问一次自增一次,计数器最小的会被移除。但是要想到,每次add的时候都需要做这么一次遍历循环,并取出最小的抛弃,在HashMap较大的时候效率很差。当然也有其他方法来改进,比如建立<访问次数,LinkedHashMap元素的key>这样的TreeMap,在add的时候往TreeMap里也插入一份,删除的时候取最小的即可,改进了效率但没有LinkedHashMap内部的默认实现来的简捷。
LinkedHashMap是什么时候删除的呢?
void addEntry(int hash, K key, V value, int bucketIndex) { super.addEntry(hash, key, value, bucketIndex); // Remove eldest entry if instructed Entry<K,V> eldest = header.after; if (removeEldestEntry(eldest)) { removeEntryForKey(eldest.key); } }
在增加Entry的时候,通过removeEldestEntry(eldest)判断是否需要删除最老的Entry,如果需要则remove。注意看这里Entry<K,V> eldest=header.after,记得我们前面提过LinkedHashMap还维护一个双向链表,这里的header.after就是链表尾部最后一个元素(头部元素是head.before)。
LinkedHashMap默认的removeEldestEntry方法如下
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) { return false; }
keyMap = new LinkedHashMap<Object, Object>(size, .75F, true) { private static final long serialVersionUID = 4267176411845948333L; protected boolean removeEldestEntry(Map.Entry<Object, Object> eldest) { boolean tooBig = size() > size; if (tooBig) { eldestKey = eldest.getKey(); } return tooBig; } };
开发者的子类并不需要直接操作eldest(上例中获得eldestKey只是MyBatis需要映射到Cache对象中的元素),只要根据自己的条件(一般是元素个数是否到达阈值)返回true/false即可。注意,要按照LRU排序必须在new LinkedHashMap()的构造函数的最后一个参数传入true(true代表LinkedHashMap内部的双向链表按访问顺序排序,false代表按插入顺序排序)。
在LinkedHashMap的注释里明确提到,该类在保持插入顺序、不想HashMap那样混乱的情况下,又没有像TreeMap那样的性能损耗。同时又能够很巧妙地实现LRU算法。其他方面和HashMap功能一致。有兴趣的同学可以仔细看看LinkedHashMap的实现。
以上是关于LinkedHashMap实现LRU算法的主要内容,如果未能解决你的问题,请参考以下文章