pcl之octree的使用

Posted chriscoder

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pcl之octree的使用相关的知识,希望对你有一定的参考价值。

pcl之octree的使用

The Point Cloud Library provides point cloud compression functionality. It allows for encoding all kinds of point clouds including “unorganized” point clouds that are characterized by non-existing point references, varying point size, resolution, density and/or point ordering. Furthermore, the underlying octree data structure enables to efficiently merge point cloud data from several sources.

  • Point Cloud Compression
    First, create a file, let’s say, point_cloud_compression.cpp and place the following inside it:
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/openni_grabber.h>
#include <pcl/visualization/cloud_viewer.h>

#include <pcl/compression/octree_pointcloud_compression.h>

#include <stdio.h>
#include <sstream>
#include <stdlib.h>

#ifdef WIN32
# define sleep(x) Sleep((x)*1000)
#endif

class SimpleOpenNIViewer
{
public:
  SimpleOpenNIViewer () :
    viewer (" Point Cloud Compression Example")
  {
  }

  void
  cloud_cb_ (const pcl::PointCloud<pcl::PointXYZRGBA>::ConstPtr &cloud)
  {
    if (!viewer.wasStopped ())
    {
      // stringstream to store compressed point cloud
      std::stringstream compressedData;
      // output pointcloud
      pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloudOut (new pcl::PointCloud<pcl::PointXYZRGBA> ());

      // compress point cloud
      PointCloudEncoder->encodePointCloud (cloud, compressedData);

      // decompress point cloud
      PointCloudDecoder->decodePointCloud (compressedData, cloudOut);


      // show decompressed point cloud
      viewer.showCloud (cloudOut);
    }
  }

  void
  run ()
  {

    bool showStatistics = true;

    // for a full list of profiles see: /io/include/pcl/compression/compression_profiles.h
    pcl::io::compression_Profiles_e compressionProfile = pcl::io::MED_RES_ONLINE_COMPRESSION_WITH_COLOR;

    // instantiate point cloud compression for encoding and decoding
    PointCloudEncoder = new pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA> (compressionProfile, showStatistics);
    PointCloudDecoder = new pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA> ();

    // create a new grabber for OpenNI devices
    pcl::Grabber* interface = new pcl::OpenNIGrabber ();

    // make callback function from member function
    boost::function<void
    (const pcl::PointCloud<pcl::PointXYZRGBA>::ConstPtr&)> f = boost::bind (&SimpleOpenNIViewer::cloud_cb_, this, _1);

    // connect callback function for desired signal. In this case its a point cloud with color values
    boost::signals2::connection c = interface->registerCallback (f);

    // start receiving point clouds
    interface->start ();

    while (!viewer.wasStopped ())
    {
      sleep (1);
    }

    interface->stop ();

    // delete point cloud compression instances
    delete (PointCloudEncoder);
    delete (PointCloudDecoder);

  }

  pcl::visualization::CloudViewer viewer;

  pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA>* PointCloudEncoder;
  pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA>* PointCloudDecoder;

};

int
main (int argc, char **argv)
{
  SimpleOpenNIViewer v;
  v.run ();

  return (0);
}
  • Spatial Partitioning and Search Operations with Octrees
#include <pcl/point_cloud.h>
#include <pcl/octree/octree_search.h>

#include <iostream>
#include <vector>
#include <ctime>

int
main (int argc, char** argv)
{
  srand ((unsigned int) time (NULL));

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);

  // Generate pointcloud data
  cloud->width = 1000;
  cloud->height = 1;
  cloud->points.resize (cloud->width * cloud->height);

  for (size_t i = 0; i < cloud->points.size (); ++i)
  {
    cloud->points[i].x = 1024.0f * rand () / (RAND_MAX + 1.0f);
    cloud->points[i].y = 1024.0f * rand () / (RAND_MAX + 1.0f);
    cloud->points[i].z = 1024.0f * rand () / (RAND_MAX + 1.0f);
  }

  float resolution = 128.0f;

  pcl::octree::OctreePointCloudSearch<pcl::PointXYZ> octree (resolution);

  octree.setInputCloud (cloud);
  octree.addPointsFromInputCloud ();

  pcl::PointXYZ searchPoint;

  searchPoint.x = 1024.0f * rand () / (RAND_MAX + 1.0f);
  searchPoint.y = 1024.0f * rand () / (RAND_MAX + 1.0f);
  searchPoint.z = 1024.0f * rand () / (RAND_MAX + 1.0f);

  // Neighbors within voxel search

  std::vector<int> pointIdxVec;

  if (octree.voxelSearch (searchPoint, pointIdxVec))
  {
    std::cout << "Neighbors within voxel search at (" << searchPoint.x 
     << " " << searchPoint.y 
     << " " << searchPoint.z << ")" 
     << std::endl;
              
    for (size_t i = 0; i < pointIdxVec.size (); ++i)
   std::cout << "    " << cloud->points[pointIdxVec[i]].x 
       << " " << cloud->points[pointIdxVec[i]].y 
       << " " << cloud->points[pointIdxVec[i]].z << std::endl;
  }

  // K nearest neighbor search

  int K = 10;

  std::vector<int> pointIdxNKNSearch;
  std::vector<float> pointNKNSquaredDistance;

  std::cout << "K nearest neighbor search at (" << searchPoint.x 
            << " " << searchPoint.y 
            << " " << searchPoint.z
            << ") with K=" << K << std::endl;

  if (octree.nearestKSearch (searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0)
  {
    for (size_t i = 0; i < pointIdxNKNSearch.size (); ++i)
      std::cout << "    "  <<   cloud->points[ pointIdxNKNSearch[i] ].x 
                << " " << cloud->points[ pointIdxNKNSearch[i] ].y 
                << " " << cloud->points[ pointIdxNKNSearch[i] ].z 
                << " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;
  }

  // Neighbors within radius search

  std::vector<int> pointIdxRadiusSearch;
  std::vector<float> pointRadiusSquaredDistance;

  float radius = 256.0f * rand () / (RAND_MAX + 1.0f);

  std::cout << "Neighbors within radius search at (" << searchPoint.x 
      << " " << searchPoint.y 
      << " " << searchPoint.z
      << ") with radius=" << radius << std::endl;


  if (octree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0)
  {
    for (size_t i = 0; i < pointIdxRadiusSearch.size (); ++i)
      std::cout << "    "  <<   cloud->points[ pointIdxRadiusSearch[i] ].x 
                << " " << cloud->points[ pointIdxRadiusSearch[i] ].y 
                << " " << cloud->points[ pointIdxRadiusSearch[i] ].z 
                << " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl;
  }
}
  • Spatial change detection on unorganized point cloud data

    An octree is a tree-based data structure for organizing sparse 3-D data. In this tutorial we will learn how to use the octree implementation for detecting spatial changes between multiple unorganized point clouds which could vary in size, resolution, density and point ordering. By recursively comparing the tree structures of octrees, spatial changes represented by differences in voxel configuration can be identified. Additionally, we explain how to use the pcl octree “double buffering” technique allows us to efficiently process multiple point clouds over time.

#include <pcl/point_cloud.h>
#include <pcl/octree/octree_pointcloud_changedetector.h>

#include <iostream>
#include <vector>
#include <ctime>

int main (int argc, char** argv)
{
  srand ((unsigned int) time (NULL));

  // Octree resolution - side length of octree voxels
  float resolution = 32.0f;

  // Instantiate octree-based point cloud change detection class
  pcl::octree::OctreePointCloudChangeDetector<pcl::PointXYZ> octree (resolution);

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloudA (new pcl::PointCloud<pcl::PointXYZ> );

  // Generate pointcloud data for cloudA
  cloudA->width = 128;
  cloudA->height = 1;
  cloudA->points.resize (cloudA->width * cloudA->height);

  for (size_t i = 0; i < cloudA->points.size (); ++i)
  {
    cloudA->points[i].x = 64.0f * rand () / (RAND_MAX + 1.0f);
    cloudA->points[i].y = 64.0f * rand () / (RAND_MAX + 1.0f);
    cloudA->points[i].z = 64.0f * rand () / (RAND_MAX + 1.0f);
  }

  // Add points from cloudA to octree
  octree.setInputCloud (cloudA);
  octree.addPointsFromInputCloud ();

  // Switch octree buffers: This resets octree but keeps previous tree structure in memory.
  octree.switchBuffers ();

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloudB (new pcl::PointCloud<pcl::PointXYZ> );
   
  // Generate pointcloud data for cloudB 
  cloudB->width = 128;
  cloudB->height = 1;
  cloudB->points.resize (cloudB->width * cloudB->height);

  for (size_t i = 0; i < cloudB->points.size (); ++i)
  {
    cloudB->points[i].x = 64.0f * rand () / (RAND_MAX + 1.0f);
    cloudB->points[i].y = 64.0f * rand () / (RAND_MAX + 1.0f);
    cloudB->points[i].z = 64.0f * rand () / (RAND_MAX + 1.0f);
  }

  // Add points from cloudB to octree
  octree.setInputCloud (cloudB);
  octree.addPointsFromInputCloud ();

  std::vector<int> newPointIdxVector;

  // Get vector of point indices from octree voxels which did not exist in previous buffer
  octree.getPointIndicesFromNewVoxels (newPointIdxVector);

  // Output points
  std::cout << "Output from getPointIndicesFromNewVoxels:" << std::endl;
  for (size_t i = 0; i < newPointIdxVector.size (); ++i)
    std::cout << i << "# Index:" << newPointIdxVector[i]
              << "  Point:" << cloudB->points[newPointIdxVector[i]].x << " "
              << cloudB->points[newPointIdxVector[i]].y << " "
              << cloudB->points[newPointIdxVector[i]].z << std::endl;
}

参考

Documentation - Point Cloud Library (PCL)

以上是关于pcl之octree的使用的主要内容,如果未能解决你的问题,请参考以下文章

PCL OcTree——点云压缩

PCL OcTree——点云压缩

PCL——八叉树Octree

PCL:八叉树Octree实现点云K近邻搜索

PCL学习总结Octree

PCL:八叉树(Octree)实现点云半径内近邻搜索