『计算机视觉』Mask-RCNN_训练网络其三:model准备
Posted hellcat
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了『计算机视觉』Mask-RCNN_训练网络其三:model准备相关的知识,希望对你有一定的参考价值。
一、模型初始化
1、创建模型并载入预训练参数
准备了数据集后,我们开始构建model,training网络结构上一节已经介绍完了,现在我们看一看训练时如何调用training结构的网络。
如上所示,我们首先建立图结构(详见上节『计算机视觉』Mask-RCNN_训练网络其二:train网络结构),然后选择初始化参数方案
例子(train_shape.ipynb)中使用的是COCO预训练模型,如果想要"Finds the last checkpoint file of the last trained model in the
model directory",那么选择"last"选项。
载入参数方法如下,注意几个之前接触不多的操作,
- 载入h5文件使用模块为h5py
- keras model有属性.layers以list形式返回全部的层对象
-
keras.engine下的saving模块load_weights_from_hdf5_group_by_name按照名字对应,而load_weights_from_hdf5_group按照记录顺序对应
def load_weights(self, filepath, by_name=False, exclude=None): """Modified version of the corresponding Keras function with the addition of multi-GPU support and the ability to exclude some layers from loading. exclude: list of layer names to exclude """ import h5py # Conditional import to support versions of Keras before 2.2 # TODO: remove in about 6 months (end of 2018) try: from keras.engine import saving except ImportError: # Keras before 2.2 used the ‘topology‘ namespace. from keras.engine import topology as saving if exclude: by_name = True if h5py is None: raise ImportError(‘`load_weights` requires h5py.‘) f = h5py.File(filepath, mode=‘r‘) if ‘layer_names‘ not in f.attrs and ‘model_weights‘ in f: f = f[‘model_weights‘] # In multi-GPU training, we wrap the model. Get layers # of the inner model because they have the weights. keras_model = self.keras_model layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model") else keras_model.layers # Exclude some layers if exclude: layers = filter(lambda l: l.name not in exclude, layers) if by_name: saving.load_weights_from_hdf5_group_by_name(f, layers) else: saving.load_weights_from_hdf5_group(f, layers) if hasattr(f, ‘close‘): f.close() # Update the log directory self.set_log_dir(filepath)
2、从h5文件一窥load模式
以上是关于『计算机视觉』Mask-RCNN_训练网络其三:model准备的主要内容,如果未能解决你的问题,请参考以下文章
『计算机视觉』Mask-RCNN_其七:Mask生成(待续)