数据结构1-3 多项式相加

Posted robotpaul

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据结构1-3 多项式相加相关的知识,希望对你有一定的参考价值。

其实这个还是有点问题的,在偶见情况下会打印出0*x,目前无解唔。。。

原理就是借用线性表,然后做运算直接先插入到后面。

然后遍历一下,只要指数相同就合并在前面一个里面,后面的归0(不删除)。

打印的时候加一个判断是否为0的条件就行了。

下面是源码:

#include<iostream>
#include<cstring>
using namespace std;
struct Node
{
    double coe;//系数
    int index;//指数
    Node *link;
};
class polynomial
{
private:
    Node *head, *tail;        //定义头指针,尾指针
public:
    polynomial();//无参构造函数
    polynomial(double a[], int n[], int number);    //有参构造函数
    ~polynomial();            //析构函数
    void setup();            //求值函数
    void add(double a[], int n[], int number);
    void subtract(double a[], int n[], int number);
    void print();
};
polynomial::polynomial()
{
    head = NULL;
    tail = NULL;
}
polynomial::polynomial(double a[], int n[], int number)
{
    head = new Node;
    head->index = 0;
    head->coe = 0;
    tail = head;
    for (int i = 0; i < number; i++)
    {
        Node *p = new Node;
        p->coe = a[i];            //存储系数
        p->index = n[i];        //存储指数
        p->link = NULL;
        tail->link = p;
        tail = p;
    }
    setup();
}
polynomial::~polynomial()
{

    if (head != NULL)
    {
        head = tail = NULL;
    }
}
void polynomial::add(double a[], int n[], int number)
{
    for (int i = 0; i < number; i++)
    {
        Node *add = new Node;
        add->coe = a[i];
        add->index = n[i];
        tail->link = add;
        tail = add;
    }
    tail->link = NULL;
    setup();
}
void polynomial::subtract(double a[], int n[], int number)
{
    for (int i = 0; i < number; i++)
    {
        Node *add = new Node;
        add->coe = -a[i];
        add->index = n[i];
        tail->link = add;
        tail = add;
    }
    tail->link = NULL;
    setup();
}
void polynomial::setup()
{
    Node *m = head->link;
    Node *p;
    while (m != NULL)
    {
        p = m->link;
        while (p != NULL)
        {
            if (m->index == p->index)
            {
                m->coe = m->coe + p->coe;
                p->coe = 0;
            }
            p = p->link;
        }
        m = m->link;
    }
    tail->link = NULL;
}
void polynomial::print()
{
    if (head == NULL)
    {
        cout << "错误,无数据!" << endl;
        exit(1);
    }
    Node *p = head;
    while (p != NULL)
    {
        p = p->link;
        if (p == NULL)
        {
            cout << endl;
            break;
        }
        if (p->coe == 0)
        {
            continue;
        }
        else
        {
            cout << p->coe << "x^" << p->index;
            if (p->link!= NULL&&p->link->coe>0)
            {
                cout << "+";
            }
            
        }
        
        
    }
}
int main()
{
    int number;
    int *index;
    double *coe;
    cout << "欢迎使用多项式计算器,请输入多项式的元素个数:" << endl;
    cin >> number;
    index = new int[number];
    coe = new double[number];
    for (int i = 0; i < number; i++)
    {
        cout << "请输入第" << i + 1 << "个多项式的系数: ";
        cin >>coe[i];
        cout << "请输入第" << i + 1 << "个多项式的指数: ";
        cin >> index[i];
    }
    polynomial test1(coe, index, number);
    test1.print();
    cout << "请输入相加的多项式的元素个数:" << endl;
    cin >> number;
    delete []index;
    delete []coe;
    index = new int[number];
    coe = new double[number];
    for (int i = 0; i < number; i++)
    {
        cout << "请输入第" << i + 1 << "个多项式的系数: ";
        cin >> coe[i];
        cout << "请输入第" << i + 1 << "个多项式的指数: ";
        cin >> index[i];
    }
    test1.add(coe, index, number);
    cout << "相加成功!" << endl;
    test1.print();
    cout << "请输入相减的多项式的元素个数:" << endl;
    cin >> number;
    delete[]index;
    delete[]coe;
    index = new int[number];
    coe = new double[number];
    for (int i = 0; i < number; i++)
    {
        cout << "请输入第" << i + 1 << "个多项式的系数: ";
        cin >> coe[i];
        cout << "请输入第" << i + 1 << "个多项式的指数: ";
        cin >> index[i];
    }
    test1.subtract(coe, index, number);
    cout << "相减成功!" << endl;
    test1.print();

    system("pause");
    return 0;
}

 

以上是关于数据结构1-3 多项式相加的主要内容,如果未能解决你的问题,请参考以下文章

视频什么是非线性模型与R语言多项式回归局部平滑样条 广义相加GAM分析工资数据|数据分享|附代码数据

从多项式相加看线性结构

结构与算法一元多项式的相加运算

线性表及其应用(多项式相加、相乘)----根据程序画出流程图及对每句程序加注释(c语言)

数据结构算法C语言实现---2.4一元多项式的表示及相加

一元多项式的相加(单链表的应用)