小凯的数字 数论

Posted zxyqzy

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了小凯的数字 数论相关的知识,希望对你有一定的参考价值。

https://www.luogu.org/problemnew/show/P4942

 

上面为原题地址;

引理:

一个数字除以9的余数等于它的各位数字之和除以9的余数

那么我们将其各个数字加起来%9即可;

当然用等差数列公式更快;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 400005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long  ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
	ll x = 0;
	char c = getchar();
	bool f = false;
	while (!isdigit(c)) {
		if (c == ‘-‘) f = true;
		c = getchar();
	}
	while (isdigit(c)) {
		x = (x << 1) + (x << 3) + (c ^ 48);
		c = getchar();
	}
	return f ? -x : x;
}

ll gcd(ll a, ll b) {
	return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; }

/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
	if (!b) {
		x = 1; y = 0; return a;
	}
	ans = exgcd(b, a%b, x, y);
	ll t = x; x = y; y = t - a / b * y;
	return ans;
}
*/



ll qpow(ll a, ll b, ll c) {
	ll ans = 1;
	a = a % c;
	while (b) {
		if (b % 2)ans = ans * a%c;
		b /= 2; a = a * a%c;
	}
	return ans;
}


int T;
ll l, r, cnt;

int main()
{
	//ios::sync_with_stdio(0);
	rdint(T);
	while (T--) {
		rdllt(l); rdllt(r);
		cnt = (r - l + 1);
		if (cnt % 2 == 0) {
			cout << ((cnt / 2) % 9 * (l + r) % 9) % 9 << endl;
		}
		else if ((r + l) % 2 == 0) {
			cout << ((cnt) % 9 * ((l + r) / 2) % 9) % 9 << endl;
		}
	}
	

    return 0;
}

 

以上是关于小凯的数字 数论的主要内容,如果未能解决你的问题,请参考以下文章

P4942小凯的数字

ACM_小凯的排序(字符串)

一道数学恶心题——小凯的疑惑

洛谷 3951 小凯的疑惑

P3951小凯的疑惑

小凯的疑惑 数学