小凯的数字 数论
Posted zxyqzy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了小凯的数字 数论相关的知识,希望对你有一定的参考价值。
https://www.luogu.org/problemnew/show/P4942
上面为原题地址;
引理:
一个数字除以9的余数等于它的各位数字之和除以9的余数
那么我们将其各个数字加起来%9即可;
当然用等差数列公式更快;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize("O3") using namespace std; #define maxn 400005 #define inf 0x3f3f3f3f #define INF 9999999999 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-3 typedef pair<int, int> pii; #define pi acos(-1.0) const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == ‘-‘) f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } ll sqr(ll x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ ll qpow(ll a, ll b, ll c) { ll ans = 1; a = a % c; while (b) { if (b % 2)ans = ans * a%c; b /= 2; a = a * a%c; } return ans; } int T; ll l, r, cnt; int main() { //ios::sync_with_stdio(0); rdint(T); while (T--) { rdllt(l); rdllt(r); cnt = (r - l + 1); if (cnt % 2 == 0) { cout << ((cnt / 2) % 9 * (l + r) % 9) % 9 << endl; } else if ((r + l) % 2 == 0) { cout << ((cnt) % 9 * ((l + r) / 2) % 9) % 9 << endl; } } return 0; }
以上是关于小凯的数字 数论的主要内容,如果未能解决你的问题,请参考以下文章