循环缓冲实现(ring buffer/circular buffer)

Posted citroen

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了循环缓冲实现(ring buffer/circular buffer)相关的知识,希望对你有一定的参考价值。

/****************************************************************************************************
* buf : 存放数据的缓冲区地址
* size: 缓冲区的大小(必须是2的幂)
* in :写指针下标
* out :读指针下标
* 缓冲区模型如下:size固定大小,in的值始终大于等于out的值
* 先从ringbuf->in到缓冲区末端写数据,如果还没写完,再从缓冲区头开始写入剩下的,从而实现了循环缓冲。
* +--------------+(in)-----------------+(size)
* +
* +-----+(out)-------------------------+
* 那么可用的缓冲空间大小就是(size - in + out)
* 所以写数据时
* 1.先从length和(ringbuf->size - ringbuf->in + ringbuf->out)之间取一个较小的值赋给length
* 2.再判断缓冲区的末端(buffer->size - (buffer->in & (buffer->size - 1)))大小是否够保存length的数据给len
* 3.拷贝len长度的数据到缓冲区的末端 memcpy(buffer->buf + (buffer->in & (buffer->size - 1)), data, len);
* 4.再拷贝剩下的数据到缓冲区的前端 memcpy(buffer->buf, data + len, length - len); 如果length - len为0则无操作。
* 5.写指针的下标增加length长度。
* 6.返回实际写入缓冲区的长度。
*
* 读取数据:
* 1.数据量的大小由(buffer->in - buffer->out)决定
* amount和(buffer->in - buffer->out)取小值给amount,作为一次读取的数据大小
* 2.尾部缓冲数据大小由(buffer->size - (buffer->out & (buffer->size - 1)))决定
* 判断尾部数据和总需求数据大小,取小值给len
* 3.先拷贝尾部缓冲的数据到目的memcpy(target, buffer->buf + (buffer->out & (buffer->size - 1)), len);
* 4.再拷贝头部缓冲数据 memcpy(target + len, buffer->buf, amount - len); amount - len为0则无操作。
* 5.读指针的下标增加amount大小
* 6.返回实际读取的数据大小。
* 注意:
* 当(ringbuf->in == ringbuf->out + ringbuf->size)即(ringbuf->in == ringbuf->out + ringbuf->size)时,表示缓冲区已满.
* 此时得到的较小值一定是0,后面实际写入的字节数也全为0。
*
* 既然ringbuf->size是2的幂,那么(ringbuf->size-1)也就是一个除最高位为0,其余二进制位都为1的一个数值
* 也就能保证(ringbuf->in & (ringbuf->size - 1))不会超过(ringbuf->size - 1),和(ringbuf->in)%(ringbuf->size - 1)的效果一样
* 从上面可以看出,ringbuf->in的值可以从0变化到超过fifo->size的数值,还要注意的是数据类型的翻转问题
* ringbuf->out也如此,但它们的差不会超过ringbuf->size。
****************************************************************************************************/

可参考文件

 

 

typedef struct cycle_buffer 
{ 
unsigned char* buf;
unsigned int size;
unsigned int in;
unsigned int out;
}RingBuffer;

RingBuffer *RingBuffer_create(int length);
void RingBuffer_destroy(RingBuffer *buffer);

int RingBuffer_read(RingBuffer *buffer, char *target, int amount);
int RingBuffer_write(RingBuffer *buffer, char *data, int length);

int RingBuffer_empty(RingBuffer *buffer);
int RingBuffer_Reset(RingBuffer *buffer);

 

#define min(x, y) ((x) < (y) ? (x) : (y))
#define ROUND_UP_2(num) (((num)+1)&~1)
#define DEFAULT_BUF_SIZE (2*1024*1024)

RingBuffer *RingBuffer_create(int length)
{
unsigned int size = ROUND_UP_2(length);

if ( (size&(size-1)) || (size < DEFAULT_BUF_SIZE) )
{
size = DEFAULT_BUF_SIZE;
}

RingBuffer *buffer = (RingBuffer *)malloc(sizeof(RingBuffer)); 
if (!buffer) 
{
return NULL; 
}
memset(buffer, 0, sizeof(RingBuffer)); 

buffer->size = size; 
buffer->in = 0;
buffer->out = 0; 

buffer->buf = (unsigned char *)malloc(size); 
if (!buffer->buf)
{
free(buffer);
return NULL;
}

memset(buffer->buf, 0, size);

return buffer;
}

void RingBuffer_destroy(RingBuffer *buffer)
{
if(buffer) {
free(buffer->buf);
free(buffer);
}
}

int RingBuffer_Reset(RingBuffer *buffer)
{
if (buffer == NULL)
{
return -1;
}

buffer->in = 0;
buffer->out = 0;
memset(buffer->buf, 0, buffer->size);

return 0;
}

int RingBuffer_empty(RingBuffer *buffer)
{
return buffer->in == buffer->out;
}

int RingBuffer_write(RingBuffer *buffer, char *data, int length)
{
unsigned int len = 0;

length = min(length, buffer->size - buffer->in + buffer->out); 
len = min(length, buffer->size - (buffer->in & (buffer->size - 1)));


memcpy(buffer->buf + (buffer->in & (buffer->size - 1)), data, len);
memcpy(buffer->buf, data + len, length - len);

buffer->in += length;

return length;
}

int RingBuffer_read(RingBuffer *buffer, char *target, int amount)
{
unsigned int len = 0;

amount = min(amount, buffer->in - buffer->out);
len = min(amount, buffer->size - (buffer->out & (buffer->size - 1)));

memcpy(target, buffer->buf + (buffer->out & (buffer->size - 1)), len);
memcpy(target + len, buffer->buf, amount - len);

buffer->out += amount;

return amount;
}

 





































以上是关于循环缓冲实现(ring buffer/circular buffer)的主要内容,如果未能解决你的问题,请参考以下文章

DPDK — RING(librte_ring,Ring Manager,环缓冲区管理组件)

DPDK — RING(librte_ring,Ring Manager,环缓冲区管理组件)

DPDK ring库:环形缓冲区的解剖

优秀的内存规划方法——环形缓冲区(ring buffer)

c++缓冲池循环队列实现

圆形缓冲区(循环buffer)实现