UVA10655 Contemplation! Algebra

Posted zhylj

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了UVA10655 Contemplation! Algebra相关的知识,希望对你有一定的参考价值。

题目

给定 (p = a + b)(q = ab)(n),求 (a ^ n + b ^ n)

$0le nlt 2^{63} $

分析

大水题。

先考虑 (n) 较小的情况,可以很容易的想到递推:
[ egin{array}{} ext{令} F(i) & = a ^ n + b ^ n & = (a + b)(a ^ {n - 1} + b ^ {n - 1}) - (ab ^ {n - 1} + a^{n - 1}b) & = (a + b)(a ^ {n - 1} + b ^ {n - 1}) - ab(a ^ {n - 2} + b ^ {n - 2}) & = p imes F(i - 1) - q imes F(i - 2) end{array} ]
然后发现这个递推式可以用矩阵优化:
[ left[egin{matrix} p & - q 1 & 0 end{matrix} ight] imes left[egin{matrix} F[i] F[i - 1] end{matrix} ight] = left[egin{matrix} F[i] imes p & + & F[i - 1] imes (-q) F[i] imes 1 & + & F[i - 1] imes 0 end{matrix} ight] = left[egin{matrix} F[i + 1] F[i] end{matrix} ight] ]
即:
[ left[egin{matrix} p & - q 1 & 0 end{matrix} ight]^n imes left[egin{matrix} F[1] F[0] end{matrix} ight] = left[egin{matrix} F[n + 1] F[n] end{matrix} ight] ]
显然,(F[1] = p, F[0] = 2)

代码

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int MAXN = 10;

struct matrix {
    ll a[MAXN][MAXN]; int rowSize, lineSize;

    matrix(int x, int y) {
        rowSize = x; lineSize = y;
    }
    
    ll *operator [](const unsigned &i) {return a[i];}

    matrix operator *(matrix y) {
        matrix ans(rowSize, y.lineSize);
        for(int i = 0; i < ans.rowSize; i++)
            for(int j = 0; j < ans.lineSize; j++) {
                ans[i][j] = 0;
                for(int k = 0; k < lineSize; k++)
                    ans[i][j] += a[i][k] * y[k][j];
            }
        return ans;
    }
} u(2, 2);

matrix qPow(matrix x, ll b) {
    matrix ans = u, base = x;
    while(b) {
        if(b & 1)
            ans = ans * base;
        base = base * base;
        b >>= 1;
    }
    return ans;
}

int main() {
    ios::sync_with_stdio(false);
    u[0][0] = 1; u[0][1] = 0;
    u[1][0] = 0; u[1][1] = 1;
    ll p, q, n;
    while(scanf("%lld%lld%lld", &p, &q, &n) == 3) {
        matrix a(2, 2), b(2, 2), st(2, 1);
        a[0][0] = p; a[0][1] = -q;
        a[1][0] = 1; a[1][1] = 0;
        st[0][0] = p; st[1][0] = 2;
        b = qPow(a, n) * st;
        printf("%lld
", b[1][0]);
    }
    return 0;
}

UVA10655 Contemplation! Algebra

以上是关于UVA10655 Contemplation! Algebra的主要内容,如果未能解决你的问题,请参考以下文章

uva10655

Contemplation! Algebra 矩阵快速幂

appcan更新

UVa新汉诺塔问题(A Different Task,Uva 10795)

UVa中国麻将(Chinese Mahjong,Uva 11210)

[2016-02-20][UVA][140][Bandwidth]