R语言线性回归

Posted connorship

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言线性回归相关的知识,希望对你有一定的参考价值。

回归分析是一个广泛使用的统计工具,用于建立两个变量之间的关系模型。 这些变量之一称为预测变量,其值通过实验收集。 另一个变量称为响应变量,其值来自预测变量。

在线性回归中,这两个变量通过一个等式相关联,其中这两个变量的指数(幂)是1。数学上,当绘制为图形时,线性关系表示直线。任何变量的指数不等于1的非线性关系产生曲线。

线性回归的一般数学方程为 -

y = ax + b
R

以下是使用的参数的描述 -

  • y - 是响应变量。
  • x - 是预测变量。
  • ab - 叫作系数的常数。

建立回归的步骤

一个简单的线性回归例子:是否能根据一个人的已知身高来预测人的体重。要做到这一点,我们需要有一个人的身高和体重之间的关系。

创建线性回归关系的步骤是 -

  • 进行收集高度和相应重量观测值样本的实验。
  • 使用R中的lm()函数创建关系模型。
  • 从所创建的模型中找到系数,并使用这些系数创建数学方程。
  • 获取关系模型的摘要,以了解预测中的平均误差(也称为残差)。
  • 为了预测新人的体重,请使用R中的predict()函数。

输入数据样本

以下是表示观察结果的样本数据 -

# Values of height
x<-151, 174, 138, 186, 128, 136, 179, 163, 152, 131

# Values of weight.
y<-63, 81, 56, 91, 47, 57, 76, 72, 62, 48
R

lm()函数

lm()函数创建预测变量与响应变量之间的关系模型。

语法

线性回归中lm()函数的基本语法是 -

lm(formula,data)
R

以下是使用的参数的描述 -

  • formula - 是表示xy之间的关系的符号。
  • data - 是应用公式的向量。

示例: 创建关系模型并得到系数

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# Apply the lm() function.
relation <- lm(y~x)

print(relation)

当我们执行上述代码时,会产生以下结果 -

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept)            x  
   -38.4551          0.6746

获取关系的概要 -

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# Apply the lm() function.
relation <- lm(y~x)

print(summary(relation))
R

当我们执行上述代码时,会产生以下结果 -

Call:
lm(formula = y ~ x)

Residuals:
    Min      1Q     Median      3Q     Max 
-6.3002    -1.6629  0.0412    1.8944  3.9775 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -38.45509    8.04901  -4.778  0.00139 ** 
x             0.67461    0.05191  12.997 1.16e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.253 on 8 degrees of freedom
Multiple R-squared:  0.9548,    Adjusted R-squared:  0.9491 
F-statistic: 168.9 on 1 and 8 DF,  p-value: 1.164e-06
Shell

predict()函数

语法

线性回归中的predict()的基本语法是 -

predict(object, newdata)
R

以下是使用的参数的描述 -

  • object - 是已经使用lm()函数创建的公式。
  • newdata - 是包含预测变量的新值的向量。

示例: 预测新人的体重

# The predictor vector.
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

# The resposne vector.
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# Apply the lm() function.
relation <- lm(y~x)

# Find weight of a person with height 170.
a <- data.frame(x = 170)
result <-  predict(relation,a)
print(result)
R

当我们执行上述代码时,会产生以下结果 -

       1 
76.22869

示例:以图形方式可视化线性回归,参考以下代码实现 -

# Create the predictor and response variable.
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)
relation <- lm(y~x)

# Give the chart file a name.
png(file = "linearregression.png")

# Plot the chart.
plot(y,x,col = "blue",main = "身高和体重回归",
abline(lm(x~y)),cex = 1.3,pch = 16,xlab = "体重(Kg)",ylab = "身高(cm)")

# Save the file.
dev.off()

当我们执行上述代码时,会产生以下结果 -

技术分享图片

来源:https://www.yiibai.com/r/r_linear_regression.html

 

以上是关于R语言线性回归的主要内容,如果未能解决你的问题,请参考以下文章

r语言怎么做每一列和第一列线性回归

多元线性回归模型用r语言怎么来实现

R语言用于线性回归的稳健方差估计

r语言如何最小二乘线性回归分析

视频什么是非线性模型与R语言多项式回归局部平滑样条 广义相加GAM分析工资数据|数据分享|附代码数据

简单线性回归问题的优化(SGD)R语言