[MapReduce_1] 运行 Word Count 示例程序

Posted share23

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[MapReduce_1] 运行 Word Count 示例程序相关的知识,希望对你有一定的参考价值。


 

0. 说明

  MapReduce 实现 Word Count 示意图 && Word Count 代码编写

 

 

 


 1. MapReduce 实现 Word Count 示意图

  技术分享图片

 

  1. Map:预处理阶段,将原始数据映射成每个 K-V,发送给 reduce
  2. Shuffle:混洗(分类),将相同的 Key发送给同一个 reduce
  3. Reduce:聚合阶段,把相同的 Key 进行聚合然后进行输出

 


 

2. Word Count 代码编写 

  [2.1 WCMapper]

 

package hadoop.mr.wc;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * Mapper 程序
 */
public class WCMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
    /**
     * map 函数,被调用过程是通过 while 循环每行调用一次
     */
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        // 将 value 变为 String 格式
        String line = value.toString();
        // 将一行文本进行截串
        String[] arr = line.split(" ");

        for (String word : arr) {
            context.write(new Text(word), new IntWritable(1));
        }

    }
}

 

  [2.2 WCReducer]

package hadoop.mr.wc;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * Reducer 类
 */
public class WCReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    /**
     * 通过迭代所有的 key 进行聚合
     */
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int sum = 0;

        for (IntWritable value : values) {
            sum += value.get();
        }

        context.write(key,new IntWritable(sum));
    }
}

 

  [2.3 WCApp]

package hadoop.mr.wc;


import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


/**
 * Word Count APP
 */
public class WCApp {
    public static void main(String[] args) throws Exception {
        // 初始化配置文件
        Configuration conf = new Configuration();

        // 仅在本地开发时使用
//        conf.set("fs.defaultFS", "file:///");

        // 通过配置文件初始化 job
        Job job = Job.getInstance(conf);

        // 设置 job 名称
        job.setJobName("Word Count");

        // job 入口函数类
        job.setJarByClass(WCApp.class);

        // 设置 mapper 类
        job.setMapperClass(WCMapper.class);

        // 设置 reducer 类
        job.setReducerClass(WCReducer.class);

        // 设置 map 的输出 K-V 类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        // 设置 reduce 的输出 K-V 类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        // 设置输入路径和输出路径
//        Path pin = new Path("E:/test/wc/1.txt");
//        Path pout = new Path("E:/test/wc/out");
        Path pin = new Path(args[0]);
        Path pout = new Path(args[1]);
        FileInputFormat.addInputPath(job, pin);
        FileOutputFormat.setOutputPath(job, pout);

        // 执行 job
        job.waitForCompletion(true);
    }
}

 

 


 



以上是关于[MapReduce_1] 运行 Word Count 示例程序的主要内容,如果未能解决你的问题,请参考以下文章

[0012] Hadoop 版hello word mapreduce wordcount 运行

Hadoop_05_运行 Hadoop 自带 MapReduce程序

MapReduce #导入Word文档图片#

Hadoop集群(第6期)_WordCount运行详解

理解Mapreduce

Hadoop2.7.6_05_mapreduce-Yarn