数据挖掘:基于Spark+HanLP实现影视评论关键词抽取

Posted mengrennwpu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据挖掘:基于Spark+HanLP实现影视评论关键词抽取相关的知识,希望对你有一定的参考价值。

1. 背景

近日项目要求基于爬取的影视评论信息,抽取影视的关键字信息。考虑到影视评论数据量较大,因此采用Spark处理框架。关键词提取的处理主要包含分词+算法抽取两部分。目前分词工具包较为主流的,包括哈工大的LTP以及HanLP,而关键词的抽取算法较多,包括TF-IDF、TextRank、互信息等。本次任务主要基于LTP、HanLP、Ac双数组进行分词,采用TextRank、互信息以及TF-IDF结合的方式进行关键词抽取。

说明:本项目刚开始接触,因此效果层面需迭代调优。

2. 技术选型

(1) 词典

1) 基于HanLP项目提供的词典数据,具体可参见HanLP的github

2) 考虑到影视的垂直领域特性,引入腾讯的嵌入的汉语词,参考该地址

(2) 分词

1) LTP分词服务:基于Docker Swarm部署多副本集服务,通过HTTP协议请求,获取分词结果(部署方法可百度); 也可以直接在本地加载,放在内存中调用,效率更高(未尝试)

2) AC双数组:基于AC双数组,采用最长匹配串,采用HanLP中的AC双数组分词器

(3) 抽取

1) 经典的TF-IDF:基于词频统计实现

2) TextRank:借鉴于PageRank算法,基于HanLP提供的接口

3) 互信息:基于HanLP提供的接口

3. 实现代码

(1) 代码结构

1) 代码将分词服务进行函数封装,基于不同的名称,执行名称指定的分词

2) TextRank、互信息、LTP、AC双数组等提取出分词或短语,最后均通过TF-IDF进行统计计算

(2) 整体代码

1) 主体代码:细节层面与下载的原始评论数据结构有关,因此无需过多关注,只需关注下主体流程即可

技术分享图片
  1 
  2 def extractFilmKeyWords(algorithm: String): Unit ={
  3     // 测试
  4 	println(HanLPSpliter.getInstance.seg("如何看待《战狼2》中的爱国情怀?"))
  5 
  6     val sc = new SparkContext(new SparkConf().setAppName("extractFileKeyWords").set("spark.driver.maxResultSize", "3g"))
  7 
  8     val baseDir = "/work/ws/video/parse/key_word"
  9 
 10     import scala.collection.JavaConversions._
 11     def extractComments(sc: SparkContext, inputInfo: (String, String)): RDD[(String, List[String])] = {
 12       sc.textFile(s"$baseDir/data/${inputInfo._2}")
 13         .map(data => {
 14           val json = JSONObjectEx.fromObject(data.trim)
 15           if(null == json) ("", List())
 16           else{
 17             val id = json.getStringByKeys("_id")
 18             val comments: List[String] = json.getArrayInfo("comments", "review").toList
 19             val reviews: List[String] = json.getArrayInfo("reviews", "review").toList
 20             val titles: List[String] = json.getArrayInfo("reviews", "title").toList
 21             val texts = (comments ::: reviews ::: titles).filter(f => !CleanUtils.isEmpty(f))
 22             (IdBuilder.getSourceKey(inputInfo._1, id), texts)
 23           }
 24         })
 25     }
 26 
 27     // 广播停用词
 28     val filterWordRdd = sc.broadcast(sc.textFile(s"$baseDir/data/stopwords.txt").map(_.trim).distinct().collect().toList)
 29 
 30     def formatOutput(infos: List[(Int, String)]): String ={
 31       infos.map(info => {
 32         val json = new JSONObject()
 33         json.put("status", info._1)
 34         try{
 35           json.put("res", info._2)
 36         } catch {
 37           case _ => json.put("res", "[]")
 38         }
 39         json.toString.replaceAll("[\s]+", "")
 40       }).mkString(" | ")
 41     }
 42 
 43     def genContArray(words: List[String]): JSONArray ={
 44       val arr = new JSONArray()
 45       words.map(f => {
 46         val json = new JSONObject()
 47         json.put("cont", f)
 48         arr.put(json)
 49       })
 50       arr
 51     }
 52 
 53 	// 基于LTP分词服务
 54     def splitWordByLTP(texts: List[String]): List[(Int, String)] ={
 55       texts.map(f => {
 56         val url = "http://dev.content_ltp.research.com/ltp"
 57         val params = new util.HashMap[String, String]()
 58         params.put("s", f)
 59         params.put("f", "json")
 60         params.put("t", "ner")
 61         // 调用LTP分词服务
 62         val result = HttpPostUtil.httpPostRetry(url, params).replaceAll("[\s]+", "")
 63         if (CleanUtils.isEmpty(result)) (0, f) else {
 64           val resultArr = new JSONArray()
 65 
 66           val jsonArr = try { JSONArray.fromString(result) } catch { case _ => null}
 67           if (null != jsonArr && 0 < jsonArr.length()) {
 68             for (i <- 0 until jsonArr.getJSONArray(0).length()) {
 69               val subJsonArr = jsonArr.getJSONArray(0).getJSONArray(i)
 70               for (j <- 0 until subJsonArr.length()) {
 71                 val subJson = subJsonArr.getJSONObject(j)
 72                 if(!filterWordRdd.value.contains(subJson.getString("cont"))){
 73                   resultArr.put(subJson)
 74                 }
 75               }
 76             }
 77           }
 78           if(resultArr.length() > 0) (1, resultArr.toString) else (0, f)
 79         }
 80       })
 81     }
 82 
 83 	// 基于AC双数组搭建的分词服务
 84     def splitWordByAcDoubleTreeServer(texts: List[String]): List[(Int, String)] ={
 85       texts.map(f => {
 86         val splitResults = SplitQueryHelper.splitQueryText(f)
 87           .filter(f => !CleanUtils.isEmpty(f) && !filterWordRdd.value.contains(f.toLowerCase)).toList
 88         if (0 == splitResults.size) (0, f) else (1, genContArray(splitResults).toString)
 89       })
 90     }
 91 
 92 	// 内存加载AC双数组
 93     def splitWordByAcDoubleTree(texts: List[String]): List[(Int, String)] ={
 94       texts.map(f => {
 95         val splitResults =  HanLPSpliter.getInstance().seg(f)
 96           .filter(f => !CleanUtils.isEmpty(f) && !filterWordRdd.value.contains(f.toLowerCase)).toList
 97         if (0 == splitResults.size) (0, f) else (1, genContArray(splitResults).toString)
 98       })
 99     }
100 
101 	// TextRank
102     def splitWordByTextRank(texts: List[String]): List[(Int, String)] ={
103       texts.map(f => {
104         val splitResults = HanLP.extractKeyword(f, 100)
105           .filter(f => !CleanUtils.isEmpty(f) && !filterWordRdd.value.contains(f.toLowerCase)).toList
106         if (0 == splitResults.size) (0, f) else {
107           val arr = genContArray(splitResults)
108           if(0 == arr.length()) (0, f) else (1, arr.toString)
109         }
110       })
111     }
112 
113 	// 互信息
114     def splitWordByMutualInfo(texts: List[String]): List[(Int, String)] ={
115       texts.map(f => {
116         val splitResults = HanLP.extractPhrase(f, 50)
117           .filter(f => !CleanUtils.isEmpty(f) && !filterWordRdd.value.contains(f.toLowerCase)).toList
118         if (0 == splitResults.size) (0, f) else {
119           val arr = genContArray(splitResults)
120           if(0 == arr.length()) (0, f) else (1, arr.toString)
121         }
122       })
123     }
124 
125     // 提取分词信息
126     val unionInputRdd = sc.union(
127 	  extractComments(sc, SourceType.DB -> "db_review.json"),
128       extractComments(sc, SourceType.MY -> "my_review.json"),
129       extractComments(sc, SourceType.MT -> "mt_review.json"))
130       .filter(_._2.nonEmpty)
131 
132     unionInputRdd.cache()
133 
134     unionInputRdd.map(data => {
135       val splitResults = algorithm match {
136         case "ltp" => splitWordByLTP(data._2)
137         case "acServer" => splitWordByAcDoubleTreeServer(data._2)
138         case "ac" => splitWordByAcDoubleTree(data._2)
139         case "textRank" => splitWordByTextRank(data._2)
140         case "mutualInfo" => splitWordByMutualInfo(data._2)
141       }
142 
143       val output = formatOutput(splitResults)
144       s"${data._1}	$output"
145     }).saveAsTextFile(HDFSFileUtil.clean(s"$baseDir/result/wordSplit/$algorithm"))
146 
147     val splitRDD = sc.textFile(s"$baseDir/result/wordSplit/$algorithm/part*", 30)
148       .flatMap(data => {
149         if(data.split("\t").length < 2) None
150         else{
151           val sourceKey = data.split("\t")(0)
152           val words = data.split("\t")(1).split(" \| ").flatMap(f => {
153             val json = JSONObjectEx.fromObject(f.trim)
154             if (null != json && "1".equals(json.getStringByKeys("status"))) {
155               val jsonArr = try { JSONArray.fromString(json.getStringByKeys("res")) } catch { case _ => null }
156               var result: List[(String, String)] = List()
157               if (jsonArr != null) {
158                 for (j <- 0 until jsonArr.length()) {
159                   val json = jsonArr.getJSONObject(j)
160                   val cont = json.getString("cont")
161                   result ::= (cont, cont)
162                 }
163               }
164               result.reverse
165             } else None
166           }).toList
167           Some((sourceKey, words))
168         }
169       }).filter(_._2.nonEmpty)
170 
171     splitRDD.cache()
172 
173     val totalFilms = splitRDD.count()
174 
175     val idfRdd = splitRDD.flatMap(result => {
176       result._2.map(_._1).distinct.map((_, 1))
177     }).groupByKey().filter(f => f._2.size > 1).map(f => (f._1, Math.log(totalFilms * 1.0 / (f._2.sum + 1))))
178 
179     idfRdd.cache()
180     idfRdd.map(f => s"${f._1}	${f._2}").saveAsTextFile(HDFSFileUtil.clean(s"$baseDir/result/idf/$algorithm"))
181 
182     val idfMap = sc.broadcast(idfRdd.collectAsMap())
183     // 计算TF
184     val tfRdd = splitRDD.map(result => {
185       val totalWords = result._2.size
186       val keyWords = result._2.groupBy(_._1)
187         .map(f => {
188           val word = f._1
189           val tf = f._2.size * 1.0 / totalWords
190           (tf * idfMap.value.getOrElse(word, 0D), word)
191         }).toList.sortBy(_._1).reverse.filter(_._2.trim.length > 1).take(50)
192       (result._1, keyWords)
193     })
194 
195     tfRdd.cache()
196     tfRdd.map(f => {
197       val json = new JSONObject()
198       json.put("_id", f._1)
199 
200       val arr = new JSONArray()
201       for (keyWord <- f._2) {
202         val subJson = new JSONObject()
203         subJson.put("score", keyWord._1)
204         subJson.put("word", keyWord._2)
205         arr.put(subJson)
206       }
207       json.put("keyWords", arr)
208       json.toString
209     }).saveAsTextFile(HDFSFileUtil.clean(s"$baseDir/result/keyword/$algorithm/withScore"))
210 
211     tfRdd.map(f => s"${f._1}	${f._2.map(_._2).toList.mkString(",")}")
212       .saveAsTextFile(HDFSFileUtil.clean(s"$baseDir/result/keyword/$algorithm/noScore"))
213 
214     tfRdd.unpersist()
215 
216     splitRDD.unpersist()
217     idfMap.unpersist()
218     idfRdd.unpersist()
219 
220     unionInputRdd.unpersist()
221     filterWordRdd.unpersist()
222     sc.stop()
223   }
View Code

2) 基于HanLP提供的AC双数组封装

技术分享图片
  1 
  2 import com.google.common.collect.Lists;
  3 import com.hankcs.hanlp.HanLP;
  4 import com.hankcs.hanlp.seg.Segment;
  5 import com.hankcs.hanlp.seg.common.Term;
  6 import org.slf4j.Logger;
  7 import org.slf4j.LoggerFactory;
  8 
  9 import java.io.Serializable;
 10 import java.util.List;
 11 
 12 public class HanLPSpliter implements Serializable{
 13     private static Logger logger = LoggerFactory.getLogger(Act.class);
 14 
 15     private static HanLPSpliter instance = null;
 16 
 17     private static Segment segment = null;
 18 
 19     private static final String PATH = "conf/tencent_word_act.txt";
 20 
 21     public static HanLPSpliter getInstance() {
 22         if(null == instance){
 23             instance = new HanLPSpliter();
 24         }
 25         return instance;
 26     }
 27 
 28     public HanLPSpliter(){
 29         this.init();
 30     }
 31 
 32     public void init(){
 33         initSegment();
 34     }
 35 
 36     public void initSegment(){
 37         if(null == segment){
 38             addDict();
 39             HanLP.Config.IOAdapter = new HadoopFileIOAdapter();
 40             segment = HanLP.newSegment("dat");
 41             segment.enablePartOfSpeechTagging(true);
 42             segment.enableCustomDictionaryForcing(true);
 43         }
 44     }
 45 
 46     public List<String> seg(String text){
 47         if(null == segment){
 48             initSegment();
 49         }
 50 
 51         List<Term> terms = segment.seg(text);
 52         List<String> results = Lists.newArrayList();
 53         for(Term term : terms){
 54             results.add(term.word);
 55         }
 56         return results;
 57     }
 58 }
View Code

3) HanLP加载HDFS中的自定义词典

技术分享图片
  1 import com.hankcs.hanlp.corpus.io.IIOAdapter;
  2 import org.apache.hadoop.conf.Configuration;
  3 import org.apache.hadoop.fs.FileSystem;
  4 import org.apache.hadoop.fs.Path;
  5 
  6 import java.io.IOException;
  7 import java.io.InputStream;
  8 import java.io.OutputStream;
  9 import java.net.URI;
 10 
 11 public class HadoopFileIOAdapter implements IIOAdapter{
 12     @Override
 13     public InputStream open(String path) throws IOException {
 14         Configuration conf = new Configuration();
 15         FileSystem fs = FileSystem.get(URI.create(path), conf);
 16         return fs.open(new Path(path));
 17     }
 18 
 19     @Override
 20     public OutputStream create(String path) throws IOException {
 21         Configuration conf = new Configuration();
 22         FileSystem fs = FileSystem.get(URI.create(path), conf);
 23         OutputStream out = fs.create(new Path(path));
 24         return out;
 25     }
 26 }
View Code

4. 采坑总结

(1) Spark中实现HanLP自定义词典的加载

由于引入腾讯的嵌入词,因此使用HanLP的自定义词典功能,参考的方法如下:

a. 《基于hanLP的中文分词详解-MapReduce实现&自定义词典文件》,该方法适用于自定义词典的数量较少的情况,如果词典量较大,如腾讯嵌入词820W+,理论上jar包较为臃肿

b. 《Spark中使用HanLP分词》,该方法的好处在于无需手工构件词典的bin文件,操作简单

切记:如果想让自定义词典生效,需先将data/dictionary/custom中的bin文件删除。通过HanLP源码得知,如果存在bin文件,则直接该bin文件,否则会将custom中用户自定义的词典重新加载,在指定的环境中(如本地或HDFS)中自动生成bin文件。

腾讯820W词典,基于HanLP生成bin文件的时间大概为30分钟。

(2) Spark异常

Spark执行过程中的异常信息:

1) 异常1

a. 异常信息:

Job aborted due to stage failure: Total size of serialized results of 3979 tasks (1024.2 MB) is bigger than spark.driver.maxResultSize (1024.0 MB)

b. 解决:通过设置spark.driver.maxResultSize=4G,参考:《Spark排错与优化

2) 异常2

a. 异常信息:java.lang.OutOfMemoryError: Java heap space

b. 解决:参考https://blog.csdn.net/guohecang/article/details/52088117

 

如有问题,请留言回复!

以上是关于数据挖掘:基于Spark+HanLP实现影视评论关键词抽取的主要内容,如果未能解决你的问题,请参考以下文章

HanLP 基于SVM支持向量机 进行 ChnSentiCorp 情感分析

HanLP 基于SVM支持向量机 进行 ChnSentiCorp 情感分析

基于Javaee的影视创作论坛的设计与实现

Spark实现列转行

Spark应用HanLP对中文语料进行文本挖掘--聚类

基于LR的新闻多分类(基于spark2.1.0, 附完整代码)