基于tensorflow的CNN卷积神经网络对Fasion-MNIST数据集的分类器
Posted francischeng
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于tensorflow的CNN卷积神经网络对Fasion-MNIST数据集的分类器相关的知识,希望对你有一定的参考价值。
写一个基于tensorflow的cnn,分类fasion-MNIST数据集
这个就是fasion-mnist数据集了
先上代码,在分析:
import tensorflow as tf import pandas as pd import numpy as np config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.3 train_data = pd.read_csv(‘test.csv‘) test_data = pd.read_csv(‘test.csv‘) def Weight(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial, tf.float32) def biases(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial, tf.float32) def conv(inputs, w): return tf.nn.conv2d(inputs, w, strides=[1, 1, 1, 1], padding=‘SAME‘) def pool(inputs): return tf.nn.max_pool(inputs, ksize=[1, 1, 1, 1], strides=[1, 2, 2, 1], padding=‘SAME‘) x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.int64, [None]) x_image = tf.reshape(x, [-1, 28, 28, 1]) w1 = Weight([5, 5, 1, 32]) b1 = biases([32]) conv1 = tf.nn.relu(conv(x_image, w1) + b1) p1 = pool(conv1) w2 = Weight([5, 5, 32, 64]) b2 = biases([64]) conv2 = tf.nn.relu(conv(p1, w2) + b2) p2 = pool(conv2) flattended = tf.reshape(p2, [-1, 7 * 7 * 64]) w_fc1 = Weight([7 * 7 * 64, 1024]) b_fc1 = biases([1024]) fc1 = tf.matmul(flattended, w_fc1) + b_fc1 h_fc1 = tf.nn.relu(fc1) w_fc2 = Weight([1024, 10]) b_fc2 = biases([10]) logits = tf.matmul(h_fc1, w_fc2) + b_fc2 cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y) correct_prediction = tf.equal(y, tf.argmax(logits, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) init = tf.global_variables_initializer() sess = tf.Session(config=config) sess.run(init) for i in range(10000): choice = np.random.choice(6000, 100) batch = train_data.iloc[choice] labels = np.array(batch.iloc[:, 0]) features = np.array(batch.iloc[:, 1:]).astype(np.float32) sess.run(train_step, feed_dict={x: features, y: labels}) if i % 50 == 0: test_batch = test_data.iloc[0:1000, :] test_labes = np.array(test_batch.iloc[:, 0]) test_features = np.array(test_batch.iloc[:, 1:]).astype(np.float32) print(sess.run(accuracy, feed_dict={x: test_features, y: test_labes})) sess.close()
1.定义Weight, biases, conv层, pool层
def Weight(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial, tf.float32) def biases(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial, tf.float32) def conv(inputs, w): return tf.nn.conv2d(inputs, w, strides=[1, 1, 1, 1], padding=‘SAME‘) def pool(inputs): return tf.nn.max_pool(inputs, ksize=[1, 1, 1, 1], strides=[1, 2, 2, 1], padding=‘SAME‘)
在这段代码中, 卷积层的,步幅都是1, 用SAME的padding方式,池化层的步幅是x y轴都是2, 这样,数据每次经过一次卷积和池化, 图像的宽和长都会变成原来的二分之一,也就是 原先 28x28 的图像 将会经过 14*14 到 7*7的变化
2. 定义placeholder
以上是关于基于tensorflow的CNN卷积神经网络对Fasion-MNIST数据集的分类器的主要内容,如果未能解决你的问题,请参考以下文章
基于Tensorflow卷积神经网络(CNN)的人脸年龄和性别检测系统
基于tensorflow的CNN卷积神经网络对Fasion-MNIST数据集的分类器
基于CNN卷积神经网络的TensorFlow+Keras深度学习的人脸识别