PyTorch学习7《PyTorch深度学习实践》——MNIST数据集多分类(Softmax Classifier)

Posted ☆下山☆

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了PyTorch学习7《PyTorch深度学习实践》——MNIST数据集多分类(Softmax Classifier)相关的知识,希望对你有一定的参考价值。

一、数据集介绍
       The MNIST database of handwritten digits has a training set of 60,000 examples, and a test set of 10,000 examples.
       下载地址:http://yann.lecun.com/exdb/mnist/

二、基础
       1.softmax的输入不需要再做非线性变换,也就是说softmax之前不再需要激活函数。softmax通过对所有输出概率进行指数变换归一化,使所输出的结果都为正数,且所有类概率和为1。

       2.nn.NLLLoss和nn.CrossEntropyLoss的区别
       nn.NLLLoss:The negative log likelihood loss.
       nn.CrossEntropyLoss:This criterion computes the cross entropy loss between input logits and target.
       具体可以看这里:https://pytorch.org/docs/stable/nn.html#loss-functions
       对于官网的第一种情况,CrossEntropyLoss就相当于LogSoftmax和NLLLoss的组合。



三、代码

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

# prepare dataset
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])  # 使用均值和方差进行归一化

train_dataset = datasets.MNIST(root='', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)

# design model using class
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784, 512)
        self.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)

    def forward(self, x):
        x = x.view(-1, 784)  # -1其实就是自动获取mini_batch
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)  # 最后一层不做激活,不进行非线性变换

model = Net()

# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

# training cycle forward, backward, update
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        # 获得一个批次的数据和标签
        inputs, target = data
        optimizer.zero_grad()
        # 获得模型预测结果(64, 10)
        outputs = model(inputs)
        # 交叉熵代价函数outputs(64,10),target(64)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0


def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)  # dim = 1 列是第0个维度,行是第1个维度
            total += labels.size(0)
            correct += (predicted == labels).sum().item()  # 张量之间的比较运算
    print('accuracy on test set: %d %% ' % (100 * correct / total))


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

部分结果:

以上是关于PyTorch学习7《PyTorch深度学习实践》——MNIST数据集多分类(Softmax Classifier)的主要内容,如果未能解决你的问题,请参考以下文章

‹拆书分享篇›深度学习框架PyTorch入门与实践

深度学习与图神经网络核心技术实践应用高级研修班-Day1Tensorflow和Pytorch

赠书福利!《深度学习框架PyTorch:入门与实践》

每月好书深度学习框架PyTorch入门与实践

PyTorch学习3《PyTorch深度学习实践》——反向传播(Back Propagation)

PyTorch学习6《PyTorch深度学习实践》——加载数据集(Dataset and DataLoader)