计算机视觉领域常见的度量指标
Posted ranjiewen
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了计算机视觉领域常见的度量指标相关的知识,希望对你有一定的参考价值。
一:Precision, Recall, F-score
信息检索、分类、识别、翻译等领域两个最基本指标是召回率(Recall Rate)和准确率(Precision Rate------注意统计学习方法中precesion称为精确率,而准确率为accuracy 是分类正确的样本除以总样本的个数。),召回率也叫查全率,准确率也叫查准率,概念公式:
召回率(Recall)= 系统检索到的相关文件 / 系统所有相关的文件总数;;;亦即预测为真实正例除以所有真实正例样本的个数
准确率(Precision)= 系统检索到的相关文件 / 系统所有检索到的文件总数;;;亦即等于预测为真实正例除以所有被预测为正例样本的个数
图示表示如下:
注意:(1)准确率和召回率是互相影响的,理想情况下肯定是做到两者都高,但是一般情况下准确率高、召回率就低,召回率低、准确率高,当然如果两者都低,那是什么地方出问题了。
(2)如果是做搜索,那就是保证召回的情况下提升准确率;如果做疾病监测、反垃圾,则是保准确率的条件下,提升召回。
所以,在两者都要求高的情况下,可以用F1(或者称为F-score)来衡量。计算公式如下:
F1= 2 * P * R / (P + R)
二:MAP
MAP:全称mean average precision(平均准确率)。mAP是为解决P,R,F-measure的单点值局限性的,同时考虑了检索效果的排名情况。
计算如下:
假设有两个主题,主题1有4个相关网页,主题2有5个相关网页。某系统对于主题1检索出4个相关网页,其rank分别为1, 2, 4, 7;对于主题2检索出3个相关网页,其rank分别为1,3,5。对于主题1,平均准确率为(1/1+2/2+3/4+4/7)/4=0.83。对于主题 2,平均准确率为(1/1+2/3+3/5+0+0)/5=0.45。则MAP=(0.83+0.45)/2=0.64。”
以上是关于计算机视觉领域常见的度量指标的主要内容,如果未能解决你的问题,请参考以下文章