「一本通 1.2 练习 3」灯泡(三分/公式法)(三角函数,计算几何)

Posted zhangjianjunab

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了「一本通 1.2 练习 3」灯泡(三分/公式法)(三角函数,计算几何)相关的知识,希望对你有一定的参考价值。

传送门

技术分享图片

这道题要用带一点点三角函数。。。

不用怕,只要有理性的思维,是可以知道怎么做的

度娘!
技术分享图片

说说我对三角函数的理解吧,简单来说,就是如果你知道直角三角形的一个锐角,那你就知道了这个直角三角型的形状了(求出三个角的角度数),那么如果由另一个直角三角型的三个角也跟这个三角形相等,那么他们两个是可以通过比例转化的,他们三条边中任意两条边之比也相等(也就是任意两条边之比如果角的度数固定了,那么这俩条边的比就固定了)。

安利:
技术分享图片

那么,假设人的影子没有在墙上,那么,人从灯底往右走,走越远影子越长!那么最长的情况就是这样:
技术分享图片

由于比相同,设影长为L,设人离灯x米远。
[H:D=h:L]
[所以Dh=HL]
[Dh/H=L]

那么我们得出了,在影子全在地上,L的最大值为Dh/H,这时x为D-Dh/H,设left=D-Dh/H
那么,如果影子全在墙上,则L=h,x=D,设right为D。
如果影子在墙上,就比较抽象了。。。

技术分享图片
然后呢。。。?
技术分享图片

那么:
技术分享图片
[那么(H-h):x=kk:(D-x)]
[(H-h)*(D-x)=x*kk]
[(H-h)*(D-x)/x=kk]
那么在墙上的影子就是
[h-kk=h-(H-h)*(D-x)/x=H-(H-h)*D/x]
[L=D-x+(h-kk)=D-x+H-(H-h)*D/x]
[=D+H-(x+(H-h)*D/x)]

那么就是要让(x+(H-h)*D/x)取最小值,可以证明,在正数区间,(x+(H-h)*D/x)是个开口向上的单峰函数。

证:
情况1:x增加y,((H-h)*D/x)减小的数大于y
情况2:x增加y,((H-h)*D/x)减小的数小于y
又由于x越大,((H-h)*D)/x减小的数字越小,所以,会由情况1慢慢转为情况2,于是便由下降变为上升,成单峰势。

于是,(D+H-(x+(H-h)*D/x))便是个开口向下的单峰函数!(那你整这么一大坨有什么用?)
技术分享图片
早说有图片!

实现:
l=left,r=right;
当答案=l时,代表影子全在地上的最大值。
当答案=r是时,代表影子全在墙上的最大值
当答案=(l,r)时,代表影子一半在墙上,一半在地上的最大值。

代码:

#include<cstdio>
#include<cstring>
using  namespace  std;
typedef  long  long  ll;
inline  double  mymax(double  x,double  y){return  x>y?x:y;}
inline  double  cai(double  H,double  h,double  D,ll  x)
{
    double  xx=x/10000.0;
    return  H+D-xx-((H-h)*D)/xx;
}//之前推出的函数 
double  sanfen(double  H,double  h,double  D)
{
    ll  l=ll((D-(h*D)/H)*10000.0),r=ll(D*10000.0);//乘以10000转ll 
    ll  m1,m2;
    while(l<r)//三分 
    {
        m1=(l+r)/2;m2=(l+r)/2+1;
        if(cai(H,h,D,m1)>cai(H,h,D,m2))r=m1;
        else  l=m2;
    }
    return  cai(H,h,D,l);//真象只有一个,l或r就是答案 
}
int  main()
{
    int  T;scanf("%d",&T);
    while(T--)
    {
        double  H,h,D;scanf("%lf%lf%lf",&H,&h,&D);
        printf("%.3lf
",sanfen(H,h,D));//输出 
    }
    return  0;
}

公式法:

因为这个我看了好久题解(泪奔)(:光速逃

那么,如果是经验丰富的巨佬,一定会想到公式法。。。

[我们设(H-h)*D为A,设B、C、D为x的一个取值。]
[C为x+(H-h)*D/x的单峰]
[且B<C<D]
[则有B+A/B>C+A/C<D+A/D]
[由B+A/B>C+A/C所得]
[B-C>A/C-A/B]
[B-C>A(B-C)/BC]
[BC(B-C)>A(B-C)]
[BC<A]
[又因为C<B,所以BC<C^2]
那是不是代表(A=C^2)证出来了,耶!想太多

安利:
技术分享图片

[但是,由C+A/C<D+A/D可得]
[C-D<A/D-A/C]
[C-D<A(C-D)/CD]
[CD(C-D)<A(C-D)]
[CD>A]
[又因为D>C,所以CD>C^2]
那么我们就可以名正言顺说(A=C^2)耶!
所以(C=sqrt(A))
所以,当(x)等于(sqrt((H-h)*D))时,(x+(H-h)*D/x)位于单峰上,同时(D+H-(x+(H-h)*D/x))也位于单峰上
技术分享图片

当然,当[x<=left]时,由于(D+H-(x+(H-h)*D/x))是个开口向下的单峰函数,且(x=[left,right])所以x=left。
同理当(x>=right)时,x=right!

代码:

#include<cstdio>
#include<cstring>
#include<cmath>
using  namespace  std;
int  main()
{
    int  T;scanf("%d",&T);
    while(T--)
    {
        double  H,h,D;scanf("%lf%lf%lf",&H,&h,&D);
        double  x=sqrt((H-h)*D);
        if(x<=D-(h*D)/H)printf("%.3lf
",(h*D)/H);//全在地上
        else  if(x>=D)printf("%.3lf
",h);//全在墙上
        else  printf("%.3lf
",H+D-x*2);//一部分在地上,一部分在墙上
    }
    return  0;
}

光速逃,耶!写完了!

















































以上是关于「一本通 1.2 练习 3」灯泡(三分/公式法)(三角函数,计算几何)的主要内容,如果未能解决你的问题,请参考以下文章

信息学奥赛一本通 1.2 二分与三分

二分与三分

P3382 模板三分法

#10013 曲线(三分)

『一本通』二分与三分

信息学奥赛一本通Part1.2 基础算法-二分与三分