TOJ 3600Fibonacci II (对数+斐波那契通项式)

Posted kannyi

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TOJ 3600Fibonacci II (对数+斐波那契通项式)相关的知识,希望对你有一定的参考价值。

描述

2007年到来了。经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列
(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来。
接下来,CodeStar决定要考考他,于是每问他一个数字,他就要把答案说出来,不过有的数字太长了。所以规定超过4位的只要说出前4位就可以了,可是CodeStar自己又记不住。于是他决定编写一个程序来测验zouyu说的是否正确。

输入

输入若干数字n(0 <= n <= 100000000),每个数字一行。读到文件尾。

输出

输出f[n]的前4个数字(若不足4个数字,就全部输出)。

样例输入

0
1
2
3
4
5
35
36
37
38
39
40

样例输出

0
1
1
2
3
5
9227
1493
2415
3908
6324
1023

题解:

假设给出一个数10234432,那么log10(10234432)=log10(1.0234432*10^7)=log10(1.0234432)+7。
log10(1.0234432)=0.010063744 即是 log10(10234432)的小数部分。
那么 10^0.010063744=1.023443198,取前4位1023即是答案!

为了方便计算,在此我预处理了前17个斐波那契数。

 

此题在运用对数的同时,还需要斐波那契数列的通项公式:技术分享图片

对该公式取10的对数技术分享图片

又由于 log10(1-((1-√5)/(1+√5))^n)在n无限增大时的极限为0,所以我们在写公式的时候可以省去这一项。

#include<bits/stdc++.h>
using namespace std;
int fib[20];
int main()
{
    int i,j,k,n;
    fib[0]=0;
    fib[1]=1;
    for(i=2;i<=17;i++)
        fib[i]=fib[i-1]+fib[i-2];
    double t=(1.0+sqrt(5))*0.5,ans;
    while(scanf("%d",&n)!=EOF)
    {
        if(n<=17)
            printf("%d
",fib[n]);
        else
        {
            ans=-0.5*log10(5.0)+n*1.0*log10(t);
            ans=ans-floor(ans);
            ans=pow(10.0,ans);
            while(ans<1000)
                ans*=10;
            printf("%d
",int(ans));
        }
    }
    return 0;
} 

 

以上是关于TOJ 3600Fibonacci II (对数+斐波那契通项式)的主要内容,如果未能解决你的问题,请参考以下文章

TOJ 1449Area of Circles II

TOJ3067: 求最大值II

CodeForces - 633H :Fibonacci-ish II(莫对+线段树)(占位)

A.Fibonacci

hdu1568 Fibonacci---前4位

CF633H Fibonacci-ish II 莫队线段树矩阵乘法