强连通分量算法·$tarjan$初探
Posted pks-t
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了强连通分量算法·$tarjan$初探相关的知识,希望对你有一定的参考价值。
嗯,今天好不容易把鸽了好久的缩点给弄完了……感觉好像……很简单?
算法的目的,其实就是在有向图上,把一个强连通分量缩成一个点……然后我们再对此搞搞事情,(over)
哦对,时间复杂度很显然是(Theta(n))的,懒得(Proof)了。
真是简明扼要的算法啊(233)
比较弱智的代码是下面的:
#include <stack>
#include <cstdio>
#include <iostream>
#define min Min
#define max Max
#define MAXN 10010
#define MAXM 50010
#define to(k) E[k].to
std::stack <int> S ;
struct Edge{
int to, next ;
}E[MAXM] ; int head[MAXN], vis[MAXN], c ;
int N, M, A, B, Ans, dfn[MAXN], low[MAXN], cnt ;
inline int Min(int a, int b) { return a & ((a - b) >> 31) | b & (~(a - b) >> 31) ; }
inline int Max(int a, int b) { return a & ((b - a) >> 31) | b & (~(b - a) >> 31) ; }
inline void _Add(int u, int v){ E[++ cnt].to = v, E[cnt].next = head[u], head[u] = cnt ;}
void Tarjan(int u){
S.push(u), vis[u] = 1 ;
dfn[u] = low[u] = ++ c ;
for (int k = head[u] ; k ; k = E[k].next){
if (vis[to(k)]) low[u] = min(low[u], low[to(k)]) ;
else if (!dfn[to(k)]) Tarjan(to(k)), low[u] = min(low[u], low[to(k)]) ;
}
if (dfn[u] == low[u]) ++ Ans ;
}
int main(){
int i ; std::cin >> N >> M ;
for (i = 1 ; i <= M ; ++ i) scanf("%d%d", &A, &B), _Add(A, B) ;
for (i = 1 ; i <= N ; ++ i) if (!dfn[i]) Tarjan(i) ; printf("%d", Ans) ; return 0 ;
}
十分(zz)的统计联通块个数……当然还有进阶版本:
(mathcal{Description})
(mathcal{Solution})
其实就是让求大小非(1)的联通块个数……稍微弹个栈就行了(233)
#include <stack>
#include <cstdio>
#include <iostream>
#define min Min
#define max Max
#define MAXN 10010
#define MAXM 50010
#define to(k) E[k].to
std::stack <int> S ;
struct Edge{
int to, next ;
}E[MAXM] ; int head[MAXN], vis[MAXN], c ;
int N, M, A, B, Ans, dfn[MAXN], low[MAXN], cnt ;
inline int Min(int a, int b) { return a & ((a - b) >> 31) | b & (~(a - b) >> 31) ; }
inline int Max(int a, int b) { return a & ((b - a) >> 31) | b & (~(b - a) >> 31) ; }
inline void _Add(int u, int v){ E[++ cnt].to = v, E[cnt].next = head[u], head[u] = cnt ;}
void Tarjan(int u){
S.push(u), vis[u] = 1 ;
dfn[u] = low[u] = ++ c ;
for (int k = head[u] ; k ; k = E[k].next){
if (vis[to(k)]) low[u] = min(low[u], low[to(k)]) ;
else if (!dfn[to(k)]) Tarjan(to(k)), low[u] = min(low[u], low[to(k)]) ;
}
if (dfn[u] == low[u]){
int t = 0 ;
while(!S.empty()){
int T = S.top() ;
++ t ; S.pop() ;
if (T == u) break ;
}
Ans += (t > 1) ;
}
}
int main(){
int i ; std::cin >> N >> M ;
for (i = 1 ; i <= M ; ++ i) scanf("%d%d", &A, &B), _Add(A, B) ;
for (i = 1 ; i <= N ; ++ i) if (!dfn[i]) Tarjan(i) ; printf("%d", Ans) ; return 0 ;
}
还有更加进阶的版本:
(mathcal{Description})
(mathcal{Solution})
就是缩完点之后跑(DP)……[DP ~ in ~Graph= Floyd = ext{最短路} = SPFA]这个题里,这个思路好像没问题……
那么就直接缩完点在联通块之间跑(SPFA)就行。
#include <stack>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define max Max
#define MAX 100010
#define to(k) E[k].to
using namespace std ;
stack <int> S ;
queue <int> q ;
struct Edge{
int to, next, v ;
}E[MAX] ; int A, B, N, M, Ans, tot, cnt, c ;
int head[MAX], dist[MAX], Edges[MAX][2], val[MAX] ;
int base[MAX], vis[MAX], clr[MAX], dfn[MAX], low[MAX] ;
inline void Tarjan(int now){
S.push(now), vis[now] = 1,
low[now] = dfn[now] = ++ c ;/**/
for (int k = head[now] ; k ; k = E[k].next){
if(vis[to(k)]) low[now] = min(low[now], dfn[to(k)]) ;
else if (!dfn[to(k)]) Tarjan(to(k)), low[now] = min(low[now], low[to(k)]) ;
}
if (dfn[now] == low[now]){
++ tot ;
while(!S.empty()){
int t = S.top() ;
clr[t] = tot, vis[t] = 0,
val[tot] += base[t], S.pop() ;
if (t == now) break ;
}
}
}
inline int Max(int a, int b){ return a & ((b - a) >> 31) | b & (~(b - a) >> 31) ; }
inline void Clear(){cnt = 0, fill(head, head + N + 3, 0) ; memset(E, 0, sizeof(E)) ;}
inline void _Add(int u, int v){ E[++ cnt].to = v, E[cnt].next = head[u], head[u] = cnt ;}
inline void SPFA(int x){
fill(vis, vis + N + 2, 0),
fill(dist, dist + N + 2, 0) ;
dist[x] = val[x], vis[x] = 1, q.push(x) ;
while (!q.empty()){
int now = q.front() ; q.pop(), vis[now] = 0 ;
for (int k = head[now] ; k ; k = E[k].next){
int v = E[k].to ;
if (dist[v] < dist[now] + val[v]) {
dist[v] = dist[now] + val[v] ;
if (!vis[v]) vis[v] = 1, q.push(v) ;
}
}
}
for (int i = 1 ; i <= tot ; ++ i) Ans = max(Ans, dist[i]) ;
}
int main(){
int i ; cin >> N >> M ;
for (i = 1 ; i <= N ; ++ i) scanf("%d", &base[i]) ;
for (i = 1 ; i <= M ; ++ i)
Edges[i][0] = A, Edges[i][1] = B, scanf("%d%d", &A, &B), _Add(A, B) ;
/**/for (i = 1 ; i <= N ; ++ i) if (!dfn[i]) Tarjan(i) ; Clear() ;
for (i = 1 ; i <= M ; ++ i) if (clr[Edges[i][0]] != clr[Edges[i][1]]) _Add(clr[Edges[i][0]], clr[Edges[i][1]]) ;/**/
for (i = 1 ; i <= tot ; ++ i) SPFA(i) ; printf("%d
", Ans) ; return 0 ;
}
个人觉得缩点……没啥好说的……因为比较简单嘛……
以上是关于强连通分量算法·$tarjan$初探的主要内容,如果未能解决你的问题,请参考以下文章