HDU 3609 二分图多重匹配

Posted stranger-

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU 3609 二分图多重匹配相关的知识,希望对你有一定的参考价值。

Escape

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 13005    Accepted Submission(s): 3258


Problem Description
2012 If this is the end of the world how to do? I do not know how. But now scientists have found that some stars, who can live, but some people do not fit to live some of the planet. Now scientists want your help, is to determine what all of people can live in these planets.
 

 

Input
More set of test data, the beginning of each data is n (1 <= n <= 100000), m (1 <= m <= 10) n indicate there n people on the earth, m representatives m planet, planet and people labels are from 0. Here are n lines, each line represents a suitable living conditions of people, each row has m digits, the ith digits is 1, said that a person is fit to live in the ith-planet, or is 0 for this person is not suitable for living in the ith planet.
The last line has m digits, the ith digit ai indicates the ith planet can contain ai people most..
0 <= ai <= 100000
 

 

Output
Determine whether all people can live up to these stars
If you can output YES, otherwise output NO.
 

 

Sample Input
1 1
1
1
2 2
1 0
1 0
1 1
 
Sample Output
YES
NO
 
AC代码
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("
")
#define debug(a,b) cout<<a<<" "<<b<<" "<<endl
#define ffread(a) fastIO::read(a)
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int MAXN = 1e5+10;//左集合大小
const int MAXM = 15;//右集合大小
int uN,vN;//左右集合的数量
int g[MAXN][MAXM];
int linker[MAXM][MAXN];
bool used[MAXM];
int num[MAXM];//右集合的限制
bool dfs(int u)
{
    for(int v = 0; v < vN; v++)
        if(g[u][v] && !used[v])
        {
            used[v] = true;
            if(linker[v][0] < num[v])
            {
                linker[v][++linker[v][0]] = u;
                return true;
            }
            for(int i = 1; i <= num[v]; i++)
                if(dfs(linker[v][i]))
                {
                    linker[v][i] = u;
                    return true;
                }
        }
    return false;
}
int hungary()
{
    int res = 0,flag=0;
    for(int i = 0; i < vN; i++)
        linker[i][0] = 0;
    for(int u = 0; u < uN; u++)
    {
        memset(used,false,sizeof(used));
        if(dfs(u))
            res++;
        else   //当前人不能匹配 直接就是NO了
        {
            flag=1;
            break;
        }
    }
    return flag;
}
int main()
{
    while(scanf("%d%d",&uN,&vN)!=EOF)
    {
        for(int i=0;i<uN;i++)
            for(int j=0;j<vN;j++)
                scanf("%d",&g[i][j]);
        for(int i=0;i<vN;i++)
            scanf("%d",&num[i]);
        if(hungary())
            puts("NO");
        else
            puts("YES");
    }
}

 

 







以上是关于HDU 3609 二分图多重匹配的主要内容,如果未能解决你的问题,请参考以下文章

二分图——多重匹配模板hdu1669

HDU 3605 Escape(二分图多重匹配问题)

hdu 3605(二分图多重匹配,匈牙利算法)

hdu 3605 Escape 二分图的多重匹配(匈牙利算法)

hdu 3605 Escape 二分图的多重匹配(匈牙利算法)

二分图多重匹配