sklearn的使用

Posted feiyumo

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了sklearn的使用相关的知识,希望对你有一定的参考价值。

传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类。

1. 获取数据

1.1 导入sklearn数据集

  sklearn中包含了大量的优质的数据集,在你学习机器学习的过程中,你可以通过使用这些数据集实现出不同的模型,从而提高你的动手实践能力,同时这个过程也可以加深你对理论知识的理解和把握。(这一步我也亟需加强,一起加油!^-^)

首先呢,要想使用sklearn中的数据集,必须导入datasets模块:

from sklearn import datasets

 下图中包含了大部分sklearn中数据集,调用方式也在图中给出,这里我们拿iris的数据来举个例子:

  技术分享图片技术分享图片

iris = datasets.load_iris() # 导入数据集
X = iris.data # 获得其特征向量
y = iris.target # 获得样本label

1.2 创建数据集

  你除了可以使用sklearn自带的数据集,还可以自己去创建训练样本,具体用法参见《Dataset loading utilities》,这里我们简单介绍一些,sklearn中的samples generator包含的大量创建样本数据的方法:

   技术分享图片技术分享图片

下面我们拿分类问题的样本生成器举例子:

from sklearn.datasets.samples_generator import make_classification

X, y = make_classification(n_samples=6, n_features=5, n_informative=2, 
    n_redundant=2, n_classes=2, n_clusters_per_class=2, scale=1.0, 
    random_state=20)

# n_samples:指定样本数
# n_features:指定特征数
# n_classes:指定几分类
# random_state:随机种子,使得随机状可重
>>> for x_,y_ in zip(X,y):
    print(y_,end=‘: ‘)
    print(x_)

    
0: [-0.6600737  -0.0558978   0.82286793  1.1003977  -0.93493796]
1: [ 0.4113583   0.06249216 -0.90760075 -1.41296696  2.059838  ]
1: [ 1.52452016 -0.01867812  0.20900899  1.34422289 -1.61299022]
0: [-1.25725859  0.02347952 -0.28764782 -1.32091378 -0.88549315]
0: [-3.28323172  0.03899168 -0.43251277 -2.86249859 -1.10457948]
1: [ 1.68841011  0.06754955 -1.02805579 -0.83132182  0.93286635]

2. 数据预处理

  数据预处理阶段是机器学习中不可缺少的一环,它会使得数据更加有效的被模型或者评估器识别。下面我们来看一下sklearn中有哪些平时我们常用的函数:

from sklearn import preprocessing

2.1 数据归一化

  为了使得训练数据的标准化规则与测试数据的标准化规则同步,preprocessing中提供了很多Scaler:

data = [[0, 0], [0, 0], [1, 1], [1, 1]]
# 1. 基于mean和std的标准化
scaler = preprocessing.StandardScaler().fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)

# 2. 将每个特征值归一化到一个固定范围
scaler = preprocessing.MinMaxScaler(feature_range=(0, 1)).fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)
#feature_range: 定义归一化范围,注用()括起来

2.2 正则化(normalize

  当你想要计算两个样本的相似度时必不可少的一个操作,就是正则化。其思想是:首先求出样本的p-范数,然后该样本的所有元素都要除以该范数,这样最终使得每个样本的范数都为1。

>>> X = [[ 1., -1.,  2.],
...      [ 2.,  0.,  0.],
...      [ 0.,  1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm=‘l2‘)

>>> X_normalized                                      
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])

 2.3 one-hot编码

  one-hot编码是一种对离散特征值的编码方式,在LR模型中常用到,用于给线性模型增加非线性能力。

data = [[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]
encoder = preprocessing.OneHotEncoder().fit(data)
enc.transform(data).toarray()

3. 数据集拆分

  在得到训练数据集时,通常我们经常会把训练数据集进一步拆分成训练集和验证集,这样有助于我们模型参数的选取。

# 作用:将数据集划分为 训练集和测试集
# 格式:train_test_split(*arrays, **options)
from sklearn.mode_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
"""
参数
---
arrays:样本数组,包含特征向量和标签

test_size:
  float-获得多大比重的测试样本 (默认:0.25)
  int - 获得多少个测试样本

train_size: 同test_size

random_state:
  int - 随机种子(种子固定,实验可复现)
  
shuffle - 是否在分割之前对数据进行洗牌(默认True)

返回
---
分割后的列表,长度=2*len(arrays), 
  (train-test split)
"""

4. 定义模型

  在这一步我们首先要分析自己数据的类型,搞清出你要用什么模型来做,然后我们就可以在sklearn中定义模型了。sklearn为所有模型提供了非常相似的接口,这样使得我们可以更加快速的熟悉所有模型的用法。在这之前我们先来看看模型的常用属性和功能:

# 拟合模型
model.fit(X_train, y_train)
# 模型预测
model.predict(X_test)

# 获得这个模型的参数
model.get_params()
# 为模型进行打分
model.score(data_X, data_y) # 线性回归:R square; 分类问题: acc

 4.1 线性回归

from sklearn.linear_model import LinearRegression
# 定义线性回归模型
model = LinearRegression(fit_intercept=True, normalize=False, 
    copy_X=True, n_jobs=1)
"""
参数
---
    fit_intercept:是否计算截距。False-模型没有截距
    normalize: 当fit_intercept设置为False时,该参数将被忽略。 如果为真,则回归前的回归系数X将通过减去平均值并除以l2-范数而归一化。
     n_jobs:指定线程数
"""

      技术分享图片

 4.2 逻辑回归LR

from sklearn.linear_model import LogisticRegression
# 定义逻辑回归模型
model = LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, 
    fit_intercept=True, intercept_scaling=1, class_weight=None, 
    random_state=None, solver=’liblinear’, max_iter=100, multi_class=’ovr’, 
    verbose=0, warm_start=False, n_jobs=1)

"""参数
---
    penalty:使用指定正则化项(默认:l2)
    dual: n_samples > n_features取False(默认)
    C:正则化强度的反,值越小正则化强度越大
    n_jobs: 指定线程数
    random_state:随机数生成器
    fit_intercept: 是否需要常量
"""

 4.3 朴素贝叶斯算法NB

from sklearn import naive_bayes
model = naive_bayes.GaussianNB() # 高斯贝叶斯
model = naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)
model = naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None)
"""
文本分类问题常用MultinomialNB
参数
---
    alpha:平滑参数
    fit_prior:是否要学习类的先验概率;false-使用统一的先验概率
    class_prior: 是否指定类的先验概率;若指定则不能根据参数调整
    binarize: 二值化的阈值,若为None,则假设输入由二进制向量组成
"""

 4.4 决策树DT

from sklearn import tree 
model = tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None, 
    min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, 
    max_features=None, random_state=None, max_leaf_nodes=None, 
    min_impurity_decrease=0.0, min_impurity_split=None,
     class_weight=None, presort=False)
"""参数
---
    criterion :特征选择准则gini/entropy
    max_depth:树的最大深度,None-尽量下分
    min_samples_split:分裂内部节点,所需要的最小样本树
    min_samples_leaf:叶子节点所需要的最小样本数
    max_features: 寻找最优分割点时的最大特征数
    max_leaf_nodes:优先增长到最大叶子节点数
    min_impurity_decrease:如果这种分离导致杂质的减少大于或等于这个值,则节点将被拆分。
"""

4.5 支持向量机SVM

from sklearn.svm import SVC
model = SVC(C=1.0, kernel=’rbf’, gamma=’auto’)
"""参数
---
    C:误差项的惩罚参数C
    gamma: 核相关系数。浮点数,If gamma is ‘auto’ then 1/n_features will be used instead.
"""

 4.6 k近邻算法KNN

from sklearn import neighbors
#定义kNN分类模型
model = neighbors.KNeighborsClassifier(n_neighbors=5, n_jobs=1) # 分类
model = neighbors.KNeighborsRegressor(n_neighbors=5, n_jobs=1) # 回归
"""参数
---
    n_neighbors: 使用邻居的数目
    n_jobs:并行任务数
"""

4.7 多层感知机(神经网络)

from sklearn.neural_network import MLPClassifier
# 定义多层感知机分类算法
model = MLPClassifier(activation=‘relu‘, solver=‘adam‘, alpha=0.0001)
"""参数
---
    hidden_layer_sizes: 元祖
    activation:激活函数
    solver :优化算法{‘lbfgs’, ‘sgd’, ‘adam’}
    alpha:L2惩罚(正则化项)参数。
"""

5. 模型评估与选择篇

5.1 交叉验证

from sklearn.model_selection import cross_val_score
cross_val_score(model, X, y=None, scoring=None, cv=None, n_jobs=1)
"""参数
---
    model:拟合数据的模型
    cv : k-fold
    scoring: 打分参数-‘accuracy’、‘f1’、‘precision’、‘recall’ 、‘roc_auc’、‘neg_log_loss‘等等
"""

5.2 检验曲线

  使用检验曲线,我们可以更加方便的改变模型参数,获取模型表现。

from sklearn.model_selection import validation_curve
train_score, test_score = validation_curve(model, X, y, param_name, param_range, cv=None, scoring=None, n_jobs=1)
"""参数
---
    model:用于fit和predict的对象
    X, y: 训练集的特征和标签
    param_name:将被改变的参数的名字
    param_range: 参数的改变范围
    cv:k-fold
   
返回值
---
   train_score: 训练集得分(array)
    test_score: 验证集得分(array)
"""

例子

6. 保存模型

  最后,我们可以将我们训练好的model保存到本地,或者放到线上供用户使用,那么如何保存训练好的model呢?主要有下面两种方式:

6.1 保存为pickle文件

import pickle

# 保存模型
with open(‘model.pickle‘, ‘wb‘) as f:
    pickle.dump(model, f)

# 读取模型
with open(‘model.pickle‘, ‘rb‘) as f:
    model = pickle.load(f)
model.predict(X_test)

6.2 sklearn自带方法joblib

from sklearn.externals import joblib

# 保存模型
joblib.dump(model, ‘model.pickle‘)

#载入模型
model = joblib.load(‘model.pickle‘)

以上是关于sklearn的使用的主要内容,如果未能解决你的问题,请参考以下文章

Sklearn:如何在庞大的数据集上应用降维?

用pickle加速sklearn/机器学习的分类任务?

用于 R 的可训练 sklearn StandardScaler

为啥这段代码不用import sklearn就可以使用sklearn函数?

《Python机器学习及实践》----监督学习经典模型

《Python机器学习及实践》----监督学习经典模型