树链剖分p3178[HAOI2015]树上操作
Posted -guz
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了树链剖分p3178[HAOI2015]树上操作相关的知识,希望对你有一定的参考价值。
Description
有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a 。操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。操作 3 :询问某个节点 x 到根的路径中所有点的点权和。
Input
第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1 行每行两个正整数 from, to , 表示该树中存在一条边 (from, to) 。再接下来 M 行,每行分别表示一次操作。其中第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。
Output
对于每个询问操作,输出该询问的答案。答案之间用换行隔开。
明显的树剖裸题,不过没有一遍切掉就很可惜.
貌似只有边权转点权的时候需要判断(x==y)?
代码
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cctype>
#define int long long
#define R register
#define N 100008
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,m,head[N],tot,f[N],son[N],size[N],depth[N];
struct cod{int u,v;}edge[N<<2];
inline void add(int x,int y)
{
edge[++tot].u=head[x];
edge[tot].v=y;
head[x]=tot;
}
void dfs1(int u,int fa)
{
f[u]=fa;depth[u]=depth[fa]+1;size[u]=1;
for(R int i=head[u];i;i=edge[i].u)
{
if(edge[i].v==fa)continue;
dfs1(edge[i].v,u);
size[u]+=size[edge[i].v];
if(son[u]==-1 or size[son[u]]<size[edge[i].v])
son[u]=edge[i].v;
}
}
int idx,dfn[N],fdfn[N],top[N];
void dfs2(int u,int t)
{
top[u]=t;dfn[u]=++idx;fdfn[idx]=u;
if(son[u]==-1)return;
dfs2(son[u],t);
for(R int i=head[u];i;i=edge[i].u)
{
if(dfn[edge[i].v])continue;
dfs2(edge[i].v,edge[i].v);
}
}
#define ls o<<1
#define rs o<<1|1
int tr[N<<2],tg[N<<2],a[N];
inline void up(int o){tr[o]=tr[ls]+tr[rs];}
inline void down(int o,int l,int r)
{
if(tg[o])
{
int mid=(l+r)>>1;
tg[ls]+=tg[o];tg[rs]+=tg[o];
tr[ls]+=(mid-l+1)*tg[o];
tr[rs]+=(r-mid)*tg[o];
tg[o]=0;
}
}
void build(int o,int l,int r)
{
if(l==r)
{
tr[o]=a[fdfn[l]];
return;
}
int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
up(o);
}
void change(int o,int l,int r,int x,int y,int z)
{
if(x<=l and y>=r)
{
tg[o]+=z;
tr[o]+=(r-l+1)*z;
return;
}
down(o,l,r);
int mid=(l+r)>>1;
if(x<=mid)change(ls,l,mid,x,y,z);
if(y>mid) change(rs,mid+1,r,x,y,z);
up(o);
}
int query(int o,int l,int r,int x,int y)
{
if(x<=l and y>=r)return tr[o];
down(o,l,r);
int mid=(l+r)>>1,res=0;
if(x<=mid) res+=query(ls,l,mid,x,y);
if(y>mid)res+=query(rs,mid+1,r,x,y);
return res;
}
int tquery(int x,int y)
{
int fx=top[x],fy=top[y],res=0;
while(fx!=fy)
{
if(depth[fx]>depth[fy])
{
res+=query(1,1,idx,dfn[fx],dfn[x]);
x=f[fx];
}
else
{
res+=query(1,1,idx,dfn[fy],dfn[y]);
y=f[fy];
}
fx=top[x],fy=top[y];
}
if(dfn[x]>dfn[y])swap(x,y);
res+=query(1,1,idx,dfn[x],dfn[y]);
return res;
}
signed main()
{
in(n),in(m);memset(son,-1,sizeof son);
for(R int i=1;i<=n;i++)in(a[i]);
for(R int i=1,x,y;i<n;i++)
{
in(x),in(y);
add(x,y);add(y,x);
}
dfs1(1,0);dfs2(1,1);build(1,1,n);
for(R int opt,x,y;m;m--)
{
in(opt);
if(opt==1)
{
in(x),in(y);
change(1,1,n,dfn[x],dfn[x],y);
}
if(opt==2)
{
in(x),in(y);
change(1,1,n,dfn[x],dfn[x]+size[x]-1,y);
}
if(opt==3)
{
in(x);
printf("%lld
",tquery(1,x));
}
}
}
以上是关于树链剖分p3178[HAOI2015]树上操作的主要内容,如果未能解决你的问题,请参考以下文章