[UOJ #48]UR #3核聚变反应强度

Posted memory-of-winter

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[UOJ #48]UR #3核聚变反应强度相关的知识,希望对你有一定的参考价值。

题目大意:给你一串数$a_i$,求$sgcd(a_1,a_i)$,$sgcd(x,y)$表示$x,y$的次大公约数,若没有,则为$-1$

题解:即求最大公约数的最大约数,把$a_1$分解质因数,求出最大公约数,在判断是否可以被整除就行了

卡点:

 

C++ Code:

#include <cstdio>
#include <vector>
#define maxn 100010
std::vector<long long> v;
int n, sz;
long long s[maxn];
long long gcd(long long a, long long b) {return b ? gcd(b, a % b) : a;}
int main() {
	scanf("%d", &n);
	for (int i = 1; i <= n; i++) scanf("%lld", s + i);
	long long t = s[1];
	for (long long i = 2; i * i <= t; i++) {
		if (t % i == 0) {
			while (t % i == 0) t /= i;
			v.push_back(i);
			sz++;
		}
	}
	if (t > 1) v.push_back(t), sz++;
	for (int i = 1; i <= n; i++) {
		long long tmp = gcd(s[1], s[i]);
		if (tmp == 1) printf("-1");
		else {
			for (int i = 0; i < sz; i++) if (tmp % v[i] == 0) {
				printf("%lld", tmp / v[i]);
				break;
			}
		}
		putchar(i == n ? ‘
‘ : ‘ ‘);
	}
	return 0;
}

  

以上是关于[UOJ #48]UR #3核聚变反应强度的主要内容,如果未能解决你的问题,请参考以下文章

UOJ#49. UR #3铀仓库

UOJ#21UR#1缩进优化

UOJ#21UR #1缩进优化

UOJ83UR #7水题出题人(提交答案题)

UOJ#52. UR #4元旦激光炮(交互)

UOJ#53. UR #4追击圣诞老人 树链剖分 k短路