模式识别与机器学习——4.2特征选择

Posted chihaoyuisnothere

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了模式识别与机器学习——4.2特征选择相关的知识,希望对你有一定的参考价值。

  设有n个可用作分类的测量值,为了在不降低(或尽量不降低)分类精度的前提下,减小特征空间的维数以减少计算量,需从中直接选出m个作为分类的特征。 问题:在n个测量值中选出哪一些作为分类特征,使其具有最小的分类错误?

  从n个测量值中选出m个特征,一共有 中可能的选法。 一种“穷举”办法:对每种选法都用训练样本试分类一下,测出其正确分类率,然后做出性能最好的选择,此时需要试探的特征子集的种类达到 种,非常耗时。 需寻找一种简便的可分性准则,间接判断每一种子集的优劣。 对于独立特征的选择准则 一般特征的散布矩阵准则

  对于独立特征的选择准则 类别可分性准则应具有这样的特点,即不同类别模式特征的均值向量之间的距离应最大,而属于同一类的模式特征,其方差之和应最小。 假设各原始特征测量值是统计独立的,此时,只需对训练样本的n个测量值独立地进行分析,从中选出m个最好的作为分类特征即可。

技术分享图片

讨论:

  上述基于距离测度的可分性准则,其适用范围与模式特征的分布有关。 三种不同模式分布的情况 (a) 中特征xk的分布有很好的可分性,通过它足以分离?i和?j两种类别; (b) 中的特征分布有很大的重叠,单靠xk达不到较好的分类,需要增加其它特征; (c) 中的?i类特征xk的分布有两个最大值,虽然它与?j的分布没有重叠,但计算Gk约等于0,此时再利用Gk作为可分性准则已不合适。 因此,假若类概率密度函数不是或不近似正态分布,均值和方差就不足以用来估计类别的可分性,此时该准则函数不完全适用。

技术分享图片技术分享图片

技术分享图片

  类内、类间的散布矩阵Sw和Sb 类间离散度越大且类内离散度越小,可分性越好。 散布矩阵准则J1和J2形式 使J1或J2最大的子集可作为所选择的分类特征。 注:这里计算的散布矩阵不受模式分布形式的限制,但需要有足够数量的模式样本才能获得有效的结果

 技术分享图片

 

以上是关于模式识别与机器学习——4.2特征选择的主要内容,如果未能解决你的问题,请参考以下文章

模式识别与机器学习——4.3离散K-L变换

特征与常见的特征距离度量

特征选择

交通标志识别基于matlab HOG特征机器学习交通标识识别含Matlab源码 2200期

个人喜欢的关于模式识别机器学习推荐系统图像特征等方面个人主页及博客 转

随时更新———个人喜欢的关于模式识别机器学习推荐系统图像特征深度学习数值计算目标跟踪等方面个人主页及博客