[luogu1341][无序字母对]

Posted wxyww

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[luogu1341][无序字母对]相关的知识,希望对你有一定的参考价值。

luogu1341

思路

欧拉回路和欧拉路的裸题,首先判断是否存在欧拉路或者欧拉回路。当且仅当途中每个点的度数都为偶数时,存在欧拉回路。当且仅当图中度数为奇数的点的个数为2时,存在欧拉路。如果存在欧拉回路,就可以找一个最小的点开始dfs。如果存在欧拉路,那就只能从度数为奇数的两个点中更小的那个开始dfs。

欧拉回路的dfs过程大概就是一边删边,一边dfs。

技术分享图片

如图,dfs的过程大概就是

1-2

2-3

3-6

6-5

5-4

4-1

1入队,返回

4入队,返回

5入队,返回

6-7

7-9

8-10

10-11

11-9

9-6

6入队,返回

9入队,返回

11入队,返回

10入队,返回

8入队,返回

7入队,返回

6入队,返回

3入队,返回

2入队,返回

1入队,结束

此时队列中刚是(1-4-5-6-9-11-10-8-7-6-3-2-1),就是一个合法的欧拉回路了。因为题目中要求按照字典序最小输出序列,所以每次搜索的时候先搜索字典序小的。然后将队列倒序输出才可以。

因为要按字典序从小到大搜索,所以邻接表似乎就有点麻烦了。所以直接用邻接矩阵。

代码

#include<cstdio>
#include<iostream>
using namespace std;
const int N = 1000;
int du[N],e[N][N],ji[N],ans[N*10],ansjs;
char c[5];
void dfs(int u) {
    for(int i = 'A';i <= 'z';++i) {
        if(!e[u][i]) continue;
        e[u][i]--;
        e[i][u]--;
        dfs(i);
    }
    ans[++ansjs]=u;
}
int main() {
    int n;
    scanf("%d",&n);
    for(int i = 1;i <= n;++i) {
        scanf("%s",c+1);
        e[int(c[1])][int(c[2])]++;
        e[int(c[2])][int(c[1])]++;
        du[int(c[1])]++;
        du[int(c[2])]++;
    }
    int js=0;
    for(int i = 'A';i <= 'z';++i)  if(du[i]&1)  ji[++js]=i;
    if(js != 0 && js != 2) {
        puts("No Solution");
        return 0;
    } 
    int s=1000;
    for(int i = 'A';i <= 'z';++i) {
        if(!du[i]) continue;
        if(js == 0) s=min(s,i);
        else if(du[i]&1) s=min(s,i); 
    }
    dfs(s);
    for(int i = ansjs;i >= 1;--i)
        printf("%c",ans[i]);
    return 0;
}

以上是关于[luogu1341][无序字母对]的主要内容,如果未能解决你的问题,请参考以下文章

luogu_1341 无序字母对

[luogu1341][无序字母对]

Luogu 1341 无序字母对 - 欧拉路径

[Luogu1341]无序字母对(欧拉回路)

P1341 无序字母对(欧拉回路)

P1341 无序字母对(Hierholzer算法判断欧拉回路)