poj-2528线段树练习

Posted 31415926535x

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了poj-2528线段树练习相关的知识,希望对你有一定的参考价值。


title: poj-2528线段树练习
date: 2018-10-13 13:45:09
tags:

  • acm
  • 刷题
    categories:
  • ACM-线段树

概述

这道题坑了我好久啊啊啊啊,,,,

到现在也只是理解了kaungbin的代码,,,知道每一步做什么,,,但感觉就是哪里有些不对劲的样子,,,,

这道题有两个点是我感觉很重要的,,,一个是数据的离散化,,,另一个是线段树的变形,,,也就是它所维护的东西和之前见过的不一样了,,,,

分析思路

题意是这样的,,,在一个很大的区间里,,,不停的给每一个区间覆盖海报,,,每个覆盖的海报是不一样的,,然后问你最后一共有几个海报是露出来的,,,

大体上的思路是与所给贴海报相反的顺序贴海报,,,这样的话第一张(也就是原来顺序的最后一张)一定是全露出来的,,然后第二张(也就是原来顺序的倒数第二张)如果是在第一张的区间里说明它就被完全覆盖了,,如果是在第一张以外的其他地方,,,就说明这张也一定是露出来的,,,以此类推,,对于每一次判断出是露出来的++ans,,,最终全处理了就得到了答案,,,数据要离散后再用,,,

可以看出这样的写法中线段树只是用来判断每一次的贴海报,,,也就是说,,,线段树只是用来维护每一个区间是否被覆盖(更新),,,同时返回所要覆盖的区间是否有露出来的(查询),,,所以更新和查询的操作可以合并在一起,,,,

实现

数据的离散化

先说一下离散怎么实现:

首先原数据保存到x[maxn]数组,,,

然后把所有的数据复制到另一个数组a[maxn],,,

对其排序,,,

去重,,,

然后对去重的数组a[maxn]遍历进行离散,,,

这样想要知道知道原来数据中x所对应离散后的位置就为hash[x],,,

sort(a , a + count);
count = unique(a , a + count) - a;
for(int i = 0; i < count; ++i)
    hash[a[i]] = i;

最后的代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>

using namespace std;
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
const int maxn = 1e5 + 10;
struct node
{
    int l;
    int r;
    bool cov;       //表示这个节点所代表的区间是否被覆盖
}node[maxn << 2];

struct poster       //表示海报的结构体
{
    int l;
    int r;
}poster[maxn << 2];

void build(int rt , int l , int r)
{
    node[rt].l = l;
    node[rt].r = r;
    node[rt].cov = false;   //每一个区间初始化为未覆盖
    if(l == r)  return;
    int mid = (l + r) >> 1;
    build(lson);
    build(rson);
}

bool post(int rt , int l , int r)
{
    //当前节点,所要覆盖的额区间[l , r]
    if(node[rt].cov)    return false;                   //若这个区间已经被覆盖直接返回
    if(node[rt].l == l && node[rt].r == r)
    {
        node[rt].cov = true;                            //未覆盖的前提下找到整个区间时
        return true;
    }
    bool res;
    int mid = (node[rt].l + node[rt].r) >> 1;
    if(r <= mid)    res = post(rt << 1 , l , r);
    else if(l > mid)res = post(rt << 1 | 1 , l , r);
    else
    {
        bool r1 = post(rt << 1 , l , mid);
        bool r2 = post(rt << 1 | 1 , mid + 1 , r);
        res = r1 || r2;                                 //当跨两个区间时,,,要分别判断是否都是被覆盖的,,有一个没覆盖即露出就说明这个区间有露出的
    }

    if(node[rt << 1].cov && node[rt << 1 | 1].cov)      //两个子区间都露出父节点也是露出
        node[rt].cov = true;

    return res;
}

int a[maxn];
int hash[10000010];

int main()
{
    int T;scanf("%d" , &T);
    while(T--)
    {
        int n;
        scanf("%d" , &n);
        int count = 0;
        for(int i = 0; i < n; ++i)
        {
            scanf("%d%d" , &poster[i].l , &poster[i].r);
            a[count++] = poster[i].l;
            a[count++] = poster[i].r;
            //相邻存点
        }
        //离散
        sort(a , a + count);
        count = unique(a , a + count) - a;
        for(int i = 0; i < count; ++i)
            hash[a[i]] = i;

        build(1 , 0 , count - 1);

        int ans = 0;
        for(int i = n - 1; i >= 0; --i)             //反着遍历,,有露出的就增一
            if(post(1 , hash[poster[i].l] , hash[poster[i].r]))
                ++ans;
        printf("%d
" , ans);
    }
}

//一个缺点,,,这样单纯的离散数据会出错,,,像这一组,,,
//但是poj上没有考虑这种情况,,,,应该是标程的离散也是这样把,,,,,,
//3
//1 10
//1 3
//6 10
//2
//应该是3

总结

  • 暑假时接触过一次数据的离散化,,,但是当时只是会用就行,,,最终还是忘记了,,,只知道这样一个名词,,,这次花了点时间记忆了一下,,,但是还是没有仔细深入的看看,,,因为以前看到的离散化时用的lower_bound(),,,,而且操作更加的复杂,,,过一段时间再看看把,,,,

  • 看到网上好多人用的线段树的结构和之前写的那样一样,,,build(),update(),query(),,,但就是理解不了,,,QAQ,,,看了kuangbin的写法反到理解了,,,虽然基本是照搬过来的,,,,再过几天要重写一遍,,,

(end)

以上是关于poj-2528线段树练习的主要内容,如果未能解决你的问题,请参考以下文章

POJ 2528 线段树+离散化

POJ2528线段树基础

poj 2528 线段树+特殊离散化

poj2528 Mayor's posters (线段树+离散化)

poj 2528(线段树)

POJ 2528 Mayor&#39;s posters 离散化+线段树