HashMap

Posted kikis

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HashMap相关的知识,希望对你有一定的参考价值。

一、HashMap的结构

     Map集合即Key-Value的集合,前面加个Hash,即散列,无序的。所以HashMap是一个用于存储Key-Value键值对的无序集合,每一个键值对也叫做Entry。

     在JDK1.8之前,HashMap采用数组+链表实现,即使用链表处理冲突,同一hash值的节点都存储在一个链表里。但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值查找要遍历链表,时间复杂度为O(N),效率较低。因此JDK1.8中,HashMap采用数组+链表+红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树,时间复杂度为O(logN),这样大大减少了查找时间。

  技术分享图片         技术分享图片

                   图1 JDK1.8之前的HashMap                                                                                             图2 JDK1.8的HashMap

     1、链表

Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。来看图和具体代码:

技术分享图片

//Node是单向链表,它实现了Map.Entry接口
static class Node<k,v> implements Map.Entry<k,v> {
    final int hash;//哈希值
    final K key;//key值
    V value;//value值
    Node<k,v> next;//链表中下一个节点
}

 2、红黑树      

//红黑树
static final class TreeNode<k,v> extends LinkedHashMap.Entry<k,v> {
    TreeNode<k,v> parent;  //父节点
    TreeNode<k,v> left; //左子树
    TreeNode<k,v> right;//右子树
    TreeNode<k,v> prev;    //上一个同级节点
    boolean red;    //颜色属性
}

3、位桶

transient Node<k,v>[] table;//存储(位桶)的数组

HashMap类中有一个非常重要的字段,就是 Node[] table,即哈希桶数组,明显它是一个Node的数组。

      HashMap的基本数据结构是数组加链表的。HashMap数组的每一个元素不止是一个Entry对象,也是一个链表的头节点。每一个Entry对象通过Next指针指向它的下一个Entry节点。当新来的Entry映射到冲突的数组位置时,只需要插入到对应的链表尾部即可。当链表长度大于8时,链表转为红黑树,以此提高查找效率。

      HashMap数组每一个元素的初始值都是Null。

二、初始化

// 默认构造函数。
HashMap()

// 指定“容量大小”的构造函数
HashMap(int capacity)

// 指定“容量大小”和“加载因子”的构造函数
HashMap(int capacity, float loadFactor)

// 包含“子Map”的构造函数
HashMap(Map<? extends K, ? extends V> map)
/**
 * Constructs an empty {@code HashMap} with the specified initial
 * capacity and load factor.
 *
 * @param  initialCapacity 初始化容量
 * @param  loadFactor      负载因子
 * @throws IllegalArgumentException 初始化容量或者负载因子为负数的时候,抛出参数异常
 */
public HashMap(int initialCapacity, float loadFactor) {
//初始化容量<0,抛出参数异常
if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
//初始化容量>最大值,初始容量赋值为最大值
if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY;
//负载因子<=0或者为非法浮点数,抛出参数异常
if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " +loadFactor);
//负载因子直接赋值
this.loadFactor = loadFactor;
//将容量赋值为:大于初始化容量参数,且为2的幂的最小整数
this.threshold = tableSizeFor(initialCapacity); }

 三、Get和Put时发生了什么

对于HashMap,我们最常使用的是两个方法:Get 和 Put。

首先,我们需了解一下在这个过程中,如何确定散列位置。

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

      首先获取key值的hashCode()值,然后将hashCode值右移16位,然后将右移后的值与原来的hashCode做异或运算(使得高位也可以参与hash,更大程度上减少了碰撞率),返回结果。(其中

h>>>16,在JDK1.8中,优化了高位运算的算法,使用了零扩展,无论正数还是负数,都在高位插入0)。

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                boolean evict) {
    ...

    if ((p = tab[i = (n - 1) & hash]) == null)//获取位置
        tab[i] = newNode(hash, key, value, null);
    ...
}

       在putVal源码中,我们通过(n-1)&hash获取该对象在hashmap中的位置。其中hash就是上面hash()函数获得的值,其中n表示的是hash桶数组的长度,并且该长度为2的n次方,这样(n-1)&hash就等价于hash%n。因为&运算的效率高于%运算。

      hashMap的默认初始长度为16,并且每次自动扩展或是手动初始化时,长度必须是2的幂。为什么长度必须是2的幂,下面我们以值为“book”的Key来演示整个过程:

1.计算book的hash()值,结果为十进制的3029737,二进制的101110001110101110 1001。

2.假定HashMap长度是默认的16,计算Length-1的结果为十进制的15,二进制的1111。

3.把以上两个结果做与运算,101110001110101110 1001 & 1111 = 1001,十进制是9,所以 index=9。

      长度16或者其他2的幂,Length-1的值是所有二进制位全为1,Hash算法最终得到的index结果,完全取决于hash()值的最后几位。只要hash()本身分布均匀,Hash算法的结果就是均匀的。

      假设长度取15,Length-1为14,1110,与结果的最后一位永远为0,也就是说数组中奇数下标的位置永远不会被put进任何值。

1、Put方法的原理

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);  
} 

技术分享图片     

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // 步骤①:table未初始化或者长度为0,进行扩容
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // 步骤②:计算index,并对null做处理  
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    // 桶中已经存在元素
    else {
        Node<K,V> e; K k;
        // 步骤③:比较桶中第一个元素(数组中的结点)的hash值相等,key相等
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
                // 将第一个元素赋值给e,用e来记录
                e = p;
        // 步骤④:桶中第一个元素hash值不相等,即key不相等;且为红黑树结点
        else if (p instanceof TreeNode)
            // 放入树中
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        // 步骤⑤:桶中第一个元素hash值不相等,且为链表结点
        else {
            for (int binCount = 0; ; ++binCount) {
                // 到达链表的尾部
                if ((e = p.next) == null) {
                    // 在尾部插入新结点
                    p.next = newNode(hash, key, value, null);
                    // 结点数量达到阈值,转化为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1)
                        treeifyBin(tab, hash);
                    // 跳出循环
                    break;
                }
                // 判断链表中结点的key值与插入的元素的key值是否相等
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    // 相等,跳出循环
                    break;
                // p后移,用于遍历桶中的链表
                p = e;
            }
        }
        // 表示在桶中找到key值、hash值与插入元素相等的结点
        if (e != null) { 
            // 记录e的value
            V oldValue = e.value;
            // onlyIfAbsent为false或者旧值为null
            if (!onlyIfAbsent || oldValue == null)
                //用新值替换旧值
                e.value = value;
            // 访问后回调
            afterNodeAccess(e);
            // 返回旧值
            return oldValue;
        }
    }
    // 结构性修改
    ++modCount;
    // 步骤⑥:实际大小大于阈值则扩容
    if (++size > threshold)
        resize();
    // 插入后回调
    afterNodeInsertion(evict);
    return null;
}

流程:

1. 根据key计算得到key.hash = (h = k.hashCode()) ^ (h >>> 16);

2. 根据key.hash计算得到桶数组的索引index = key.hash & (table.length - 1),这样就找到该key的存放位置了:

① 如果该位置没有数据,用该数据新生成一个节点保存新数据,返回null;

② 如果该位置有数据是一个红黑树,那么执行相应的插入 / 更新操作;

③ 如果该位置有数据是一个链表,分两种情况一是该链表没有这个节点,另一个是该链表上有这个节点,注意这里判断的依据是key.hash是否一样:

如果该链表没有这个节点,那么采用尾插法新增节点保存新数据,返回null;如果该链表已经有这个节点了,那么找到该节点并更新新数据,返回老数据。

3. 如果是链表,加入新节点以后长度>=8,转为红黑树。

   如果hashMap的实际节点数>容量*负载因子,扩容。

扩容方法:

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;//oldTab指向hash桶数组
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {//如果oldCap不为空的话,就是hash桶数组不为空
        if (oldCap >= MAXIMUM_CAPACITY) {//如果大于最大容量了,就赋值为整数最大的阀值
            threshold = Integer.MAX_VALUE;
            return oldTab;//返回
        }//如果当前hash桶数组的长度在扩容后仍然小于最大容量 并且oldCap大于默认值16
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold 双倍扩容阀值threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];//新建hash桶数组
    table = newTab;//将新数组的值复制给旧的hash桶数组
    if (oldTab != null) {//进行扩容操作,复制Node对象值到新的hash桶数组
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {//如果旧的hash桶数组在j结点处不为空,复制给e
                oldTab[j] = null;//将旧的hash桶数组在j结点处设置为空,方便gc
                if (e.next == null)//如果e后面没有Node结点
                    newTab[e.hash & (newCap - 1)] = e;//直接对e的hash值对新的数组长度求模获得存储位置
                else if (e instanceof TreeNode)//如果e是红黑树的类型,那么添加到红黑树中
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;//将Node结点的next赋值给next
                        if ((e.hash & oldCap) == 0) {//如果结点e的hash值与原hash桶数组的长度作与运算为0
                            if (loTail == null)//如果loTail为null
                                loHead = e;//将e结点赋值给loHead
                            else
                                loTail.next = e;//否则将e赋值给loTail.next
                            loTail = e;//然后将e复制给loTail
                        }
                        else {//如果结点e的hash值与原hash桶数组的长度作与运算不为0
                            if (hiTail == null)//如果hiTail为null
                                hiHead = e;//将e赋值给hiHead
                            else
                                hiTail.next = e;//如果hiTail不为空,将e复制给hiTail.next
                            hiTail = e;//将e复制个hiTail
                        }
                    } while ((e = next) != null);//直到e为空
                    if (loTail != null) {//如果loTail不为空
                        loTail.next = null;//将loTail.next设置为空
                        newTab[j] = loHead;//将loHead赋值给新的hash桶数组[j]处
                    }
                    if (hiTail != null) {//如果hiTail不为空
                        hiTail.next = null;//将hiTail.next赋值为空
                        newTab[j + oldCap] = hiHead;//将hiHead赋值给新的hash桶数组[j+旧hash桶数组长度]
                    }
                }
            }
        }
    }
    return newTab;
}

①在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容;

②每次扩展的时候,都是扩展2倍;

③扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍的位置。

2、Get方法的原理

 HashMap 的查找操作比较简单,查找步骤与原理篇介绍一致,即先定位键值对所在的桶的位置,然后再对链表或红黑树进行查找。通过这两步即可完成查找,该操作相关代码如下:

public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    // 1. 定位键值对所在桶的位置
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        if (first.hash == hash && 
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        if ((e = first.next) != null) {
            // 2. 如果 first 是 TreeNode 类型,则调用黑红树查找方法
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                
            // 2. 对链表进行查找
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

 参考与整理:https://www.cnblogs.com/xiaoxi/p/7233201.html







以上是关于HashMap的主要内容,如果未能解决你的问题,请参考以下文章

HashMap原理:哈希函数的设计

HashMap深度解析

JDK源码阅读之 HashMap

ArrayList 和 HashMap 的默认大小是多数?

如何将 Parcelable 与 HashMap 一起使用

hashmap冲突的解决方法以及原理分析: