数学——泰勒公式

Posted brightyuxl

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数学——泰勒公式相关的知识,希望对你有一定的参考价值。

开篇

为啥需要泰勒展开公式?

当我们研究复杂函数(代入一个x可以得到它的y = 输入和输出)的时候,很难搞清楚该函数的曲线或者描述的关系,然而我们仅仅关心某个点附近的性质,这个时候我们就可以用一次函数在该点处近似代替这个复杂函数在该点处的性质;如果要增加精度,可以用二次函数近似代替。

一元函数的泰勒展开

给定一个函数,给定某个点,需要在这个点附近采用简单的函数近似,我们的方法是在该点处泰勒展开:
目标函数,也就是(f(x))已知
[f(x)]
给定point,也就是(x_0)已知
[x_0]
(x_0)附近用多项式函数近似(f(x)),有
[f(x) = f(x_0) + frac{df(x)}{dx}|_{x=x_0}(x-x_0) + frac{frac{d^2f(x)}{{dx}^2}|_{x=x_0}}{2!}(x-x_0)^2 + cdots]
[f(x) = sum_{n=0}^infty [f^{(n)}(x_0) imes frac{1}{n!}(x-x_0)^n]]

好的理解泰勒公式的资料

  1. 泰勒公式的展开细节解析
  2. 如何通俗地解释泰勒公式?
  3. 浅显易懂——泰勒展开

以上是关于数学——泰勒公式的主要内容,如果未能解决你的问题,请参考以下文章

12月学习进度10/31 —— 高等数学泰勒公式的两种通俗理解方式

高等数学笔记

人工智能数学基础:泰勒(Taylor)公式

数学基础系列----第一中值定理微积分基本定理牛莱公式泰勒公式

高等数学笔记

2018四川高考数学(全国卷3)理科21题以泰勒公式为命题背景和它的另类解法的瞎谈