列举一些算法对照片图像进行相似度对比分析比较

Posted angelye

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了列举一些算法对照片图像进行相似度对比分析比较相关的知识,希望对你有一定的参考价值。

首先: 图片如下

技术分享图片           技术分享图片

                                       18.jpg                                                                                    19.jpg

技术分享图片           技术分享图片

                                       20.jpg                                                                                    21.jpg

技术分享图片

 

                        2.jpg

技术分享图片

                        3.jpg

算法以及对比结果

一、

18/19/20/21 图片对比以及结果

技术分享图片
package com.aliyun.picture.demo;

import javax.imageio.ImageIO;
import java.awt.*;
import java.awt.color.ColorSpace;
import java.awt.image.BufferedImage;
import java.awt.image.ColorConvertOp;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;

/**
 * @BelongsProject: maven-demo
 * @BelongsPackage: com.aliyun.picture.demo
 * @Author: Guoyh
 * @CreateTime: 2018-10-12 15:25
 * @Description: 对比图片相似度
 */
public class ImageContrastUtil {
    // 对比方法
    public static Double imageComparison(InputStream sampleInputStream,InputStream contrastInputStream ) throws IOException {
        //获取灰度像素的比较数组
        int[] photoArrayTwo = getPhotoArray(contrastInputStream);
        int[] photoArrayOne = getPhotoArray(sampleInputStream);

        // 获取两个图的汉明距离
        int hammingDistance = getHammingDistance(photoArrayOne, photoArrayTwo);
        // 通过汉明距离计算相似度,取值范围 [0.0, 1.0]
        double similarity = calSimilarity(hammingDistance);

        //返回相似精度
        return  similarity;
    }

    // 将任意Image类型图像转换为BufferedImage类型,方便后续操作
    public static BufferedImage convertToBufferedFrom(Image srcImage) {
        BufferedImage bufferedImage = new BufferedImage(srcImage.getWidth(null),
                srcImage.getHeight(null), BufferedImage.TYPE_INT_ARGB);
        Graphics2D g = bufferedImage.createGraphics();
        g.drawImage(srcImage, null, null);
        g.dispose();
        return bufferedImage;
    }

    // 转换至灰度图
    public static BufferedImage toGrayscale(Image image) {
        BufferedImage sourceBuffered = convertToBufferedFrom(image);
        ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);
        ColorConvertOp op = new ColorConvertOp(cs, null);
        BufferedImage grayBuffered = op.filter(sourceBuffered, null);
        return grayBuffered;
    }

    // 缩放至32x32像素缩略图
    public static Image scale(Image image) {
        image = image.getScaledInstance(32, 32, Image.SCALE_SMOOTH);
        return image;
    }

    // 获取像素数组
    public static int[] getPixels(Image image) {
        int width = image.getWidth(null);
        int height = image.getHeight(null);
        int[] pixels = convertToBufferedFrom(image).getRGB(0, 0, width, height,
                null, 0, width);
        return pixels;
    }

    // 获取灰度图的平均像素颜色值
    public static int getAverageOfPixelArray(int[] pixels) {
        Color color;
        long sumRed = 0;
        for (int i = 0; i < pixels.length; i++) {
            color = new Color(pixels[i], true);
            sumRed += color.getRed();
        }
        int averageRed = (int) (sumRed / pixels.length);
        return averageRed;
    }

    // 获取灰度图的像素比较数组(平均值的离差)
    public static int[] getPixelDeviateWeightsArray(int[] pixels, final int averageColor) {
        Color color;
        int[] dest = new int[pixels.length];
        for (int i = 0; i < pixels.length; i++) {
            color = new Color(pixels[i], true);
            dest[i] = color.getRed() - averageColor > 0 ? 1 : 0;
        }
        return dest;
    }

    // 获取两个缩略图的平均像素比较数组的汉明距离(距离越大差异越大)
    public static int getHammingDistance(int[] a, int[] b) {
        int sum = 0;
        for (int i = 0; i < a.length; i++) {
            sum += a[i] == b[i] ? 0 : 1;
        }
        return sum;
    }

    //获取灰度像素的比较数组
    public static int[] getPhotoArray(InputStream inputStream) throws IOException {
        Image image = ImageIO.read(inputStream);
//        Image image = ImageIO.read(imageFile);
        // 转换至灰度
        image = toGrayscale(image);
        // 缩小成32x32的缩略图
        image = scale(image);
        // 获取灰度像素数组
        int[] pixels = getPixels(image);
        // 获取平均灰度颜色
        int averageColor = getAverageOfPixelArray(pixels);
        // 获取灰度像素的比较数组(即图像指纹序列)
        pixels = getPixelDeviateWeightsArray(pixels, averageColor);

        return pixels;
    }

    // 通过汉明距离计算相似度
    public static double calSimilarity(int hammingDistance) {
        int length = 32 * 32;
        double similarity = (length - hammingDistance) / (double) length;

        // 使用指数曲线调整相似度结果
        similarity = java.lang.Math.pow(similarity, 2);
        return similarity;
    }


    /**
     * @param args
     * @return void
     * @author Guoyh
     * @date 2018/10/12 15:27
     */
    public static void main(String[] args) throws Exception {

        //(数据类型)(最小值+Math.random()*(最大值-最小值+1))
        for (int i = 18; i <= 21; i++) {
            Double imageComparison =  imageComparison(new FileInputStream("G:/oss/pk/" + 18 + ".jpg"),new FileInputStream("G:/oss/pk/" +i + ".jpg"));
            System.out.println("	" + "	"+"G:/oss/pk/" + 18 + ".jpg"+"	"+"与"+"	"+"G:/oss/pk/" + i + ".jpg"+"	"+"两张图片的相似度为:" + imageComparison * 100 + "%");
        }
    }
}
ImageContrastUtil

 

技术分享图片

2/3  图片对比以及结果

技术分享图片
package com.aliyun.picture.demo;

import javax.imageio.ImageIO;
import java.awt.*;
import java.awt.color.ColorSpace;
import java.awt.image.BufferedImage;
import java.awt.image.ColorConvertOp;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;

/**
 * @BelongsProject: maven-demo
 * @BelongsPackage: com.aliyun.picture.demo
 * @Author: Guoyh
 * @CreateTime: 2018-10-12 15:25
 * @Description: 对比图片相似度
 */
public class ImageContrastUtil {
    // 对比方法
    public static Double imageComparison(InputStream sampleInputStream,InputStream contrastInputStream ) throws IOException {
        //获取灰度像素的比较数组
        int[] photoArrayTwo = getPhotoArray(contrastInputStream);
        int[] photoArrayOne = getPhotoArray(sampleInputStream);

        // 获取两个图的汉明距离
        int hammingDistance = getHammingDistance(photoArrayOne, photoArrayTwo);
        // 通过汉明距离计算相似度,取值范围 [0.0, 1.0]
        double similarity = calSimilarity(hammingDistance);

        //返回相似精度
        return  similarity;
    }

    // 将任意Image类型图像转换为BufferedImage类型,方便后续操作
    public static BufferedImage convertToBufferedFrom(Image srcImage) {
        BufferedImage bufferedImage = new BufferedImage(srcImage.getWidth(null),
                srcImage.getHeight(null), BufferedImage.TYPE_INT_ARGB);
        Graphics2D g = bufferedImage.createGraphics();
        g.drawImage(srcImage, null, null);
        g.dispose();
        return bufferedImage;
    }

    // 转换至灰度图
    public static BufferedImage toGrayscale(Image image) {
        BufferedImage sourceBuffered = convertToBufferedFrom(image);
        ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);
        ColorConvertOp op = new ColorConvertOp(cs, null);
        BufferedImage grayBuffered = op.filter(sourceBuffered, null);
        return grayBuffered;
    }

    // 缩放至32x32像素缩略图
    public static Image scale(Image image) {
        image = image.getScaledInstance(32, 32, Image.SCALE_SMOOTH);
        return image;
    }

    // 获取像素数组
    public static int[] getPixels(Image image) {
        int width = image.getWidth(null);
        int height = image.getHeight(null);
        int[] pixels = convertToBufferedFrom(image).getRGB(0, 0, width, height,
                null, 0, width);
        return pixels;
    }

    // 获取灰度图的平均像素颜色值
    public static int getAverageOfPixelArray(int[] pixels) {
        Color color;
        long sumRed = 0;
        for (int i = 0; i < pixels.length; i++) {
            color = new Color(pixels[i], true);
            sumRed += color.getRed();
        }
        int averageRed = (int) (sumRed / pixels.length);
        return averageRed;
    }

    // 获取灰度图的像素比较数组(平均值的离差)
    public static int[] getPixelDeviateWeightsArray(int[] pixels, final int averageColor) {
        Color color;
        int[] dest = new int[pixels.length];
        for (int i = 0; i < pixels.length; i++) {
            color = new Color(pixels[i], true);
            dest[i] = color.getRed() - averageColor > 0 ? 1 : 0;
        }
        return dest;
    }

    // 获取两个缩略图的平均像素比较数组的汉明距离(距离越大差异越大)
    public static int getHammingDistance(int[] a, int[] b) {
        int sum = 0;
        for (int i = 0; i < a.length; i++) {
            sum += a[i] == b[i] ? 0 : 1;
        }
        return sum;
    }

    //获取灰度像素的比较数组
    public static int[] getPhotoArray(InputStream inputStream) throws IOException {
        Image image = ImageIO.read(inputStream);
//        Image image = ImageIO.read(imageFile);
        // 转换至灰度
        image = toGrayscale(image);
        // 缩小成32x32的缩略图
        image = scale(image);
        // 获取灰度像素数组
        int[] pixels = getPixels(image);
        // 获取平均灰度颜色
        int averageColor = getAverageOfPixelArray(pixels);
        // 获取灰度像素的比较数组(即图像指纹序列)
        pixels = getPixelDeviateWeightsArray(pixels, averageColor);

        return pixels;
    }

    // 通过汉明距离计算相似度
    public static double calSimilarity(int hammingDistance) {
        int length = 32 * 32;
        double similarity = (length - hammingDistance) / (double) length;

        // 使用指数曲线调整相似度结果
        similarity = java.lang.Math.pow(similarity, 2);
        return similarity;
    }


    /**
     * @param args
     * @return void
     * @author Guoyh
     * @date 2018/10/12 15:27
     */
    public static void main(String[] args) throws Exception {

        //(数据类型)(最小值+Math.random()*(最大值-最小值+1))
        for (int i = 2; i <= 3; i++) {
            Double imageComparison =  imageComparison(new FileInputStream("G:/oss/pk/" + 2 + ".jpg"),new FileInputStream("G:/oss/pk/" +i + ".jpg"));
            System.out.println("	" + "	"+"G:/oss/pk/" + 2 + ".jpg"+"	"+"与"+"	"+"G:/oss/pk/" + i + ".jpg"+"	"+"两张图片的相似度为:" + imageComparison * 100 + "%");
        }
    }
}
ImageContrastUtil

 

技术分享图片

二、

18/19/20/21 图片对比以及结果

技术分享图片
package com.aliyun.picture.demo;

/**
 * @BelongsProject: maven-demo
 * @BelongsPackage: com.aliyun.picture.demo
 * @Author: Guoyh
 * @CreateTime: 2018-10-12 14:55
 * @Description: 比较两张图像的相似度
 */

import javax.imageio.*;
import java.awt.image.*;
import java.awt.*;//Color
import java.io.*;

public class PhotoDigest {

    public static int[] getData(String name) {
        try {
            BufferedImage img = ImageIO.read(new File(name));
            BufferedImage slt = new BufferedImage(100, 100, BufferedImage.TYPE_INT_RGB);
            slt.getGraphics().drawImage(img, 0, 0, 100, 100, null);
            // ImageIO.write(slt,"jpeg",new File("slt.jpg"));
            int[] data = new int[256];
            for (int x = 0; x < slt.getWidth(); x++) {
                for (int y = 0; y < slt.getHeight(); y++) {
                    int rgb = slt.getRGB(x, y);
                    Color myColor = new Color(rgb);
                    int r = myColor.getRed();
                    int g = myColor.getGreen();
                    int b = myColor.getBlue();
                    data[(r + g + b) / 3]++;
                }
            }
            // data 就是所谓图形学当中的直方图的概念
            return data;
        } catch (Exception exception) {
            System.out.println("有文件没有找到,请检查文件是否存在或路径是否正确");
            return null;
        }
    }

    public static float compare(int[] s, int[] t) {
        try {
            float result = 0F;
            for (int i = 0; i < 256; i++) {
                int abs = Math.abs(s[i] - t[i]);
                int max = Math.max(s[i], t[i]);
                result += (1 - ((float) abs / (max == 0 ? 1 : max)));
            }
            return (result / 256) * 100;
        } catch (Exception exception) {
            return 0;
        }
    }

    public static void main(String[] args) throws Exception {

        //(数据类型)(最小值+Math.random()*(最大值-最小值+1))
        for (int i = 18; i <= 21; i++) {

            float percent = compare(getData("G:/oss/pk/" + 18 + ".jpg"),
                    getData("G:/oss/pk/" + i + ".jpg"));
            if (percent == 0) {
                System.out.println("无法比较");
            } else {
                System.out.println("	"+"G:/oss/pk/" + 18 + ".jpg"+"	"+"与"+"	"+"G:/oss/pk/" + i + ".jpg"+"	"+"两张图片的相似度为:" + percent + "%");
            }
        }
    }
}
PhotoDigest

 

技术分享图片

2/3  图片对比以及结果

技术分享图片
package com.aliyun.picture.demo;

/**
 * @BelongsProject: maven-demo
 * @BelongsPackage: com.aliyun.picture.demo
 * @Author: Guoyh
 * @CreateTime: 2018-10-12 14:55
 * @Description: 比较两张图像的相似度
 */

import javax.imageio.*;
import java.awt.image.*;
import java.awt.*;//Color
import java.io.*;

public class PhotoDigest {

    public static int[] getData(String name) {
        try {
            BufferedImage img = ImageIO.read(new File(name));
            BufferedImage slt = new BufferedImage(100, 100, BufferedImage.TYPE_INT_RGB);
            slt.getGraphics().drawImage(img, 0, 0, 100, 100, null);
            // ImageIO.write(slt,"jpeg",new File("slt.jpg"));
            int[] data = new int[256];
            for (int x = 0; x < slt.getWidth(); x++) {
                for (int y = 0; y < slt.getHeight(); y++) {
                    int rgb = slt.getRGB(x, y);
                    Color myColor = new Color(rgb);
                    int r = myColor.getRed();
                    int g = myColor.getGreen();
                    int b = myColor.getBlue();
                    data[(r + g + b) / 3]++;
                }
            }
            // data 就是所谓图形学当中的直方图的概念
            return data;
        } catch (Exception exception) {
            System.out.println("有文件没有找到,请检查文件是否存在或路径是否正确");
            return null;
        }
    }

    public static float compare(int[] s, int[] t) {
        try {
            float result = 0F;
            for (int i = 0; i < 256; i++) {
                int abs = Math.abs(s[i] - t[i]);
                int max = Math.max(s[i], t[i]);
                result += (1 - ((float) abs / (max == 0 ? 1 : max)));
            }
            return (result / 256) * 100;
        } catch (Exception exception) {
            return 0;
        }
    }

    public static void main(String[] args) throws Exception {

        //(数据类型)(最小值+Math.random()*(最大值-最小值+1))
        for (int i = 2; i <= 3; i++) {

            float percent = compare(getData("G:/oss/pk/" + 2 + ".jpg"),
                    getData("G:/oss/pk/" + i + ".jpg"));
            if (percent == 0) {
                System.out.println("无法比较");
            } else {
                System.out.println("	"+"G:/oss/pk/" + 2 + ".jpg"+"	"+"与"+"	"+"G:/oss/pk/" + i + ".jpg"+"	"+"两张图片的相似度为:" + percent + "%");
            }
        }
    }
}
PhotoDigest

 

技术分享图片

三、

18/19/20/21 图片对比以及结果

技术分享图片
package com.aliyun.picture.demo;

/**
 * 比较两张图片的相似度
 *
 * @BelongsProject: maven-demo
 * @BelongsPackage: com.aliyun.picture.demo
 * @Author: Guoyh
 * @CreateTime: 2018-10-12 14:12
 * @Description: 图像比对技术
 */

import java.awt.image.BufferedImage;
import java.io.File;
import javax.imageio.ImageIO;

public class BMPLoader {
    // 改变成二进制码
    public static String[][] getPX(String args) {
        int[] rgb = new int[3];
        File file = new File(args);
        BufferedImage bi = null;
        try {
            bi = ImageIO.read(file);
        } catch (Exception e) {
            e.printStackTrace();
        }
        int width = bi.getWidth();
        int height = bi.getHeight();
        int minx = bi.getMinX();
        int miny = bi.getMinY();
        String[][] list = new String[width][height];
        for (int i = minx; i < width; i++) {
            for (int j = miny; j < height; j++) {
                int pixel = bi.getRGB(i, j);
                rgb[0] = (pixel & 0xff0000) >> 16;
                rgb[1] = (pixel & 0xff00) >> 8;
                rgb[2] = (pixel & 0xff);
                list[i][j] = rgb[0] + "," + rgb[1] + "," + rgb[2];
            }
        }
        return list;
    }

    public static void compareImage(String imgPath1, String imgPath2) {
        String[] images = {imgPath1, imgPath2};
        if (images.length == 0) {
            System.out.println("Usage >java BMPLoader ImageFile.bmp");
            System.exit(0);
        }
        // 分析图片相似度 begin
        String[][] list1 = getPX(images[0]);
        String[][] list2 = getPX(images[1]);
        int xiangsi = 0;
        int busi = 0;
        int i = 0, j = 0;
        for (String[] strings : list1) {
            if ((i + 1) == list1.length) {
                continue;
            }
            for (int m = 0; m < strings.length; m++) {
                try {
                    String[] value1 = list1[i][j].toString().split(",");
                    String[] value2 = list2[i][j].toString().split(",");
                    int k = 0;
                    for (int n = 0; n < value2.length; n++) {
                        if (Math.abs(Integer.parseInt(value1[k]) - Integer.parseInt(value2[k])) < 5) {
                            xiangsi++;
                        } else {
                            busi++;
                        }
                    }
                } catch (RuntimeException e) {
                    continue;
                }
                j++;
            }
            i++;
        }
        list1 = getPX(images[1]);
        list2 = getPX(images[0]);
        i = 0;
        j = 0;
        for (String[] strings : list1) {
            if ((i + 1) == list1.length) {
                continue;
            }
            for (int m = 0; m < strings.length; m++) {
                try {
                    String[] value1 = list1[i][j].toString().split(",");
                    String[] value2 = list2[i][j].toString().split(",");
                    int k = 0;
                    for (int n = 0; n < value2.length; n++) {
                        if (Math.abs(Integer.parseInt(value1[k]) - Integer.parseInt(value2[k])) < 5) {
                            xiangsi++;
                        } else {
                            busi++;
                        }
                    }
                } catch (RuntimeException e) {
                    continue;
                }
                j++;
            }
            i++;
        }
        String baifen = "";
        try {
            baifen = ((Double.parseDouble(xiangsi + "") / Double.parseDouble((busi + xiangsi) + "")) + "");
            baifen = baifen.substring(baifen.indexOf(".") + 1, baifen.indexOf(".") + 3);
        } catch (Exception e) {
            baifen = "0";
        }
        if (baifen.length() <= 0) {
            baifen = "0";
        }
        if (busi == 0) {
            baifen = "100";
        }
        System.out.println(imgPath1 + "	" + " PK " + imgPath2 + "	" + "相似像素数量:" + "	" + xiangsi + "	" + "不相似像素数量:" + "	" + busi + "	" + "相似率:" + "	" + Integer.parseInt(baifen) + "%");
    }

    public static void main(String[] args) {
        //(数据类型)(最小值+Math.random()*(最大值-最小值+1))
        for (int i = 18; i <= 21; i++) {

            BMPLoader.compareImage("G:/oss/pk/" + 18 + ".jpg", "G:/oss/pk/" + i + ".jpg");
        }
    }
}
BMPLoader

 

技术分享图片

2/3  图片对比以及结果

技术分享图片
package com.aliyun.picture.demo;

/**
 * 比较两张图片的相似度
 *
 * @BelongsProject: maven-demo
 * @BelongsPackage: com.aliyun.picture.demo
 * @Author: Guoyh
 * @CreateTime: 2018-10-12 14:12
 * @Description: 图像比对技术
 */

import java.awt.image.BufferedImage;
import java.io.File;
import javax.imageio.ImageIO;

public class BMPLoader {
    // 改变成二进制码
    public static String[][] getPX(String args) {
        int[] rgb = new int[3];
        File file = new File(args);
        BufferedImage bi = null;
        try {
            bi = ImageIO.read(file);
        } catch (Exception e) {
            e.printStackTrace();
        }
        int width = bi.getWidth();
        int height = bi.getHeight();
        int minx = bi.getMinX();
        int miny = bi.getMinY();
        String[][] list = new String[width][height];
        for (int i = minx; i < width; i++) {
            for (int j = miny; j < height; j++) {
                int pixel = bi.getRGB(i, j);
                rgb[0] = (pixel & 0xff0000) >> 16;
                rgb[1] = (pixel & 0xff00) >> 8;
                rgb[2] = (pixel & 0xff);
                list[i][j] = rgb[0] + "," + rgb[1] + "," + rgb[2];
            }
        }
        return list;
    }

    public static void compareImage(String imgPath1, String imgPath2) {
        String[] images = {imgPath1, imgPath2};
        if (images.length == 0) {
            System.out.println("Usage >java BMPLoader ImageFile.bmp");
            System.exit(0);
        }
        // 分析图片相似度 begin
        String[][] list1 = getPX(images[0]);
        String[][] list2 = getPX(images[1]);
        int xiangsi = 0;
        int busi = 0;
        int i = 0, j = 0;
        for (String[] strings : list1) {
            if ((i + 1) == list1.length) {
                continue;
            }
            for (int m = 0; m < strings.length; m++) {
                try {
                    String[] value1 = list1[i][j].toString().split(",");
                    String[] value2 = list2[i][j].toString().split(",");
                    int k = 0;
                    for (int n = 0; n < value2.length; n++) {
                        if (Math.abs(Integer.parseInt(value1[k]) - Integer.parseInt(value2[k])) < 5) {
                            xiangsi++;
                        } else {
                            busi++;
                        }
                    }
                } catch (RuntimeException e) {
                    continue;
                }
                j++;
            }
            i++;
        }
        list1 = getPX(images[1]);
        list2 = getPX(images[0]);
        i = 0;
        j = 0;
        for (String[] strings : list1) {
            if ((i + 1) == list1.length) {
                continue;
            }
            for (int m = 0; m < strings.length; m++) {
                try {
                    String[] value1 = list1[i][j].toString().split(",");
                    String[] value2 = list2[i][j].toString().split(",");
                    int k = 0;
                    for (int n = 0; n < value2.length; n++) {
                        if (Math.abs(Integer.parseInt(value1[k]) - Integer.parseInt(value2[k])) < 5) {
                            xiangsi++;
                        } else {
                            busi++;
                        }
                    }
                } catch (RuntimeException e) {
                    continue;
                }
                j++;
            }
            i++;
        }
        String baifen = "";
        try {
            baifen = ((Double.parseDouble(xiangsi + "") / Double.parseDouble((busi + xiangsi) + "")) + "");
            baifen = baifen.substring(baifen.indexOf(".") + 1, baifen.indexOf(".") + 3);
        } catch (Exception e) {
            baifen = "0";
        }
        if (baifen.length() <= 0) {
            baifen = "0";
        }
        if (busi == 0) {
            baifen = "100";
        }
        System.out.println(imgPath1 + "	" + " PK " + imgPath2 + "	" + "相似像素数量:" + "	" + xiangsi + "	" + "不相似像素数量:" + "	" + busi + "	" + "相似率:" + "	" + Integer.parseInt(baifen) + "%");
    }

    public static void main(String[] args) {
        //(数据类型)(最小值+Math.random()*(最大值-最小值+1))
        for (int i = 2; i <= 3; i++) {

            BMPLoader.compareImage("G:/oss/pk/" + 2 + ".jpg", "G:/oss/pk/" + i + ".jpg");
        }
    }
}
BMPLoader

 

技术分享图片

 

 

四、

18/19/20/21 图片对比以及结果

技术分享图片
package com.aliyun.picture.demo;

/**
 * @BelongsProject: maven-demo
 * @BelongsPackage: com.aliyun.picture.demo
 * @Author: Guoyh
 * @CreateTime: 2018-10-12 15:05
 * @Description: 感知哈希算法(均值哈希算法)比较两图的相似性
 */

import javax.imageio.ImageIO;
import java.awt.Graphics;
import java.awt.Image;
import java.awt.color.ColorSpace;
import java.awt.image.BufferedImage;
import java.awt.image.ColorConvertOp;
import java.util.Arrays;
import java.io.File;

public final class FingerPrint {
    /**
     * 图像指纹的尺寸,将图像resize到指定的尺寸,来计算哈希数组
     */
    private static final int HASH_SIZE = 16;
    /**
     * 保存图像指纹的二值化矩阵
     */
    private final byte[] binaryzationMatrix;

    public FingerPrint(byte[] hashValue) {
        if (hashValue.length != HASH_SIZE * HASH_SIZE) {
            throw new IllegalArgumentException(String.format("length of hashValue must be %d", HASH_SIZE * HASH_SIZE));
        }
        this.binaryzationMatrix = hashValue;
    }

    public FingerPrint(String hashValue) {
        this(toBytes(hashValue));
    }

    public FingerPrint(BufferedImage src) {
        this(hashValue(src));
    }

    private static byte[] hashValue(BufferedImage src) {
        BufferedImage hashImage = resize(src, HASH_SIZE, HASH_SIZE);
        byte[] matrixGray = (byte[]) toGray(hashImage).getData().getDataElements(0, 0, HASH_SIZE, HASH_SIZE, null);
        return binaryzation(matrixGray);
    }

    /**
     * 从压缩格式指纹创建{@link FingerPrint}对象
     *
     * @param compactValue
     * @return
     */
    public static FingerPrint createFromCompact(byte[] compactValue) {
        return new FingerPrint(uncompact(compactValue));
    }

    public static boolean validHashValue(byte[] hashValue) {
        if (hashValue.length != HASH_SIZE) {
            return false;
        }
        for (byte b : hashValue) {
            {
                if (0 != b && 1 != b) {
                    return false;
                }
            }
        }
        return true;
    }

    public static boolean validHashValue(String hashValue) {
        if (hashValue.length() != HASH_SIZE) {
            return false;
        }
        for (int i = 0; i < hashValue.length(); ++i) {
            if (‘0‘ != hashValue.charAt(i) && ‘1‘ != hashValue.charAt(i)) {
                return false;
            }
        }
        return true;
    }

    public byte[] compact() {
        return compact(binaryzationMatrix);
    }

    /**
     * 指纹数据按位压缩
     *
     * @param hashValue
     * @return
     */
    private static byte[] compact(byte[] hashValue) {
        byte[] result = new byte[(hashValue.length + 7) >> 3];
        byte b = 0;
        for (int i = 0; i < hashValue.length; ++i) {
            if (0 == (i & 7)) {
                b = 0;
            }
            if (1 == hashValue[i]) {
                b |= 1 << (i & 7);
            } else if (hashValue[i] != 0) {
                throw new IllegalArgumentException("invalid hashValue,every element must be 0 or 1");
            }
            if (7 == (i & 7) || i == hashValue.length - 1) {
                result[i >> 3] = b;
            }
        }
        return result;
    }

    /**
     * 压缩格式的指纹解压缩
     *
     * @param compactValue
     * @return
     */
    private static byte[] uncompact(byte[] compactValue) {
        byte[] result = new byte[compactValue.length << 3];
        for (int i = 0; i < result.length; ++i) {
            if ((compactValue[i >> 3] & (1 << (i & 7))) == 0) {
                result[i] = 0;
            } else {
                result[i] = 1;
            }
        }
        return result;
    }

    /**
     * 字符串类型的指纹数据转为字节数组
     *
     * @param hashValue
     * @return
     */
    private static byte[] toBytes(String hashValue) {
        hashValue = hashValue.replaceAll("\\s", "");
        byte[] result = new byte[hashValue.length()];
        for (int i = 0; i < result.length; ++i) {
            char c = hashValue.charAt(i);
            if (‘0‘ == c) {
                result[i] = 0;
            } else if (‘1‘ == c) {
                result[i] = 1;
            } else {
                throw new IllegalArgumentException("invalid hashValue String");
            }
        }
        return result;
    }

    /**
     * 缩放图像到指定尺寸
     *
     * @param src
     * @param width
     * @param height
     * @return
     */
    private static BufferedImage resize(Image src, int width, int height) {
        BufferedImage result = new BufferedImage(width, height,
                BufferedImage.TYPE_3BYTE_BGR);
        Graphics g = result.getGraphics();
        try {
            g.drawImage(src.getScaledInstance(width, height, Image.SCALE_SMOOTH), 0, 0, null);
        } finally {
            g.dispose();
        }
        return result;
    }

    /**
     * 计算均值
     *
     * @param src
     * @return
     */
    private static int mean(byte[] src) {
        long sum = 0;
        // 将数组元素转为无符号整数
        for (byte b : src) {
            sum += (long) b & 0xff;
        }
        return (int) (Math.round((float) sum / src.length));
    }

    /**
     * 二值化处理
     *
     * @param src
     * @return
     */
    private static byte[] binaryzation(byte[] src) {
        byte[] dst = src.clone();
        int mean = mean(src);
        for (int i = 0; i < dst.length; ++i) {
            // 将数组元素转为无符号整数再比较
            dst[i] = (byte) (((int) dst[i] & 0xff) >= mean ? 1 : 0);
        }
        return dst;

    }

    /**
     * 转灰度图像
     *
     * @param src
     * @return
     */
    private static BufferedImage toGray(BufferedImage src) {
        if (src.getType() == BufferedImage.TYPE_BYTE_GRAY) {
            return src;
        } else {
            // 图像转灰
            BufferedImage grayImage = new BufferedImage(src.getWidth(), src.getHeight(),
                    BufferedImage.TYPE_BYTE_GRAY);
            new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null).filter(src, grayImage);
            return grayImage;
        }
    }

    @Override
    public String toString() {
        return toString(true);
    }

    /**
     * @param multiLine 是否分行
     * @return
     */
    public String toString(boolean multiLine) {
        StringBuffer buffer = new StringBuffer();
        int count = 0;
        for (byte b : this.binaryzationMatrix) {
            buffer.append(0 == b ? ‘0‘ : ‘1‘);
            if (multiLine && ++count % HASH_SIZE == 0) {
                buffer.append(‘
‘);
            }
        }
        return buffer.toString();
    }

    @Override
    public boolean equals(Object obj) {
        if (obj instanceof FingerPrint) {
            return Arrays.equals(this.binaryzationMatrix, ((FingerPrint) obj).binaryzationMatrix);
        } else {
            return super.equals(obj);
        }
    }

    /**
     * 与指定的压缩格式指纹比较相似度
     *
     * @param compactValue
     * @return
     * @see #compare(FingerPrint)
     */
    public float compareCompact(byte[] compactValue) {
        return compare(createFromCompact(compactValue));
    }

    /**
     * @param hashValue
     * @return
     * @see #compare(FingerPrint)
     */
    public float compare(String hashValue) {
        return compare(new FingerPrint(hashValue));
    }

    /**
     * 与指定的指纹比较相似度
     *
     * @param hashValue
     * @return
     * @see #compare(FingerPrint)
     */
    public float compare(byte[] hashValue) {
        return compare(new FingerPrint(hashValue));
    }

    /**
     * 与指定图像比较相似度
     *
     * @param image2
     * @return
     * @see #compare(FingerPrint)
     */
    public float compare(BufferedImage image2) {
        return compare(new FingerPrint(image2));
    }

    /**
     * 比较指纹相似度
     *
     * @param src
     * @return
     * @see #compare(byte[], byte[])
     */
    public float compare(FingerPrint src) {
        if (src.binaryzationMatrix.length != this.binaryzationMatrix.length) {
            throw new IllegalArgumentException("length of hashValue is mismatch");
        }
        return compare(binaryzationMatrix, src.binaryzationMatrix);
    }

    /**
     * 判断两个数组相似度,数组长度必须一致否则抛出异常
     *
     * @param f1
     * @param f2
     * @return 返回相似度(0.0 ~ 1.0)
     */
    private static float compare(byte[] f1, byte[] f2) {
        if (f1.length != f2.length) {
            throw new IllegalArgumentException("mismatch FingerPrint length");
        }
        int sameCount = 0;
        for (int i = 0; i < f1.length; ++i) {
            {
                if (f1[i] == f2[i]) {
                    ++sameCount;
                }
            }
        }
        return (float) sameCount / f1.length;
    }

    public static float compareCompact(byte[] f1, byte[] f2) {
        return compare(uncompact(f1), uncompact(f2));
    }

    public static float compare(BufferedImage image1, BufferedImage image2) {
        return new FingerPrint(image1).compare(new FingerPrint(image2));
    }

    /**
     * @param args
     * @return void
     * @author Guoyh
     * @date 2018/10/12 15:07
     */
    public static void main(String[] args) throws Exception {
        for (int i = 18; i <= 21; i++) {
            FingerPrint fp1 = new FingerPrint(ImageIO.read(new File("G:/oss/pk/" + 18 + ".jpg")));
            FingerPrint fp2 = new FingerPrint(ImageIO.read(new File("G:/oss/pk/" + i + ".jpg")));
            System.out.println("	" + "	"+"G:/oss/pk/" + 18 + ".jpg"+"	"+"与"+"	"+"G:/oss/pk/" + i + ".jpg"+"	"+"两张图片的相似度为:" + fp1.compare(fp2) * 100 + "%");
        }
    }
}
FingerPrint

 

技术分享图片

2/3  图片对比以及结果

技术分享图片
package com.aliyun.picture.demo;

/**
 * @BelongsProject: maven-demo
 * @BelongsPackage: com.aliyun.picture.demo
 * @Author: Guoyh
 * @CreateTime: 2018-10-12 15:05
 * @Description: 感知哈希算法(均值哈希算法)比较两图的相似性
 */

import javax.imageio.ImageIO;
import java.awt.Graphics;
import java.awt.Image;
import java.awt.color.ColorSpace;
import java.awt.image.BufferedImage;
import java.awt.image.ColorConvertOp;
import java.util.Arrays;
import java.io.File;

public final class FingerPrint {
    /**
     * 图像指纹的尺寸,将图像resize到指定的尺寸,来计算哈希数组
     */
    private static final int HASH_SIZE = 16;
    /**
     * 保存图像指纹的二值化矩阵
     */
    private final byte[] binaryzationMatrix;

    public FingerPrint(byte[] hashValue) {
        if (hashValue.length != HASH_SIZE * HASH_SIZE) {
            throw new IllegalArgumentException(String.format("length of hashValue must be %d", HASH_SIZE * HASH_SIZE));
        }
        this.binaryzationMatrix = hashValue;
    }

    public FingerPrint(String hashValue) {
        this(toBytes(hashValue));
    }

    public FingerPrint(BufferedImage src) {
        this(hashValue(src));
    }

    private static byte[] hashValue(BufferedImage src) {
        BufferedImage hashImage = resize(src, HASH_SIZE, HASH_SIZE);
        byte[] matrixGray = (byte[]) toGray(hashImage).getData().getDataElements(0, 0, HASH_SIZE, HASH_SIZE, null);
        return binaryzation(matrixGray);
    }

    /**
     * 从压缩格式指纹创建{@link FingerPrint}对象
     *
     * @param compactValue
     * @return
     */
    public static FingerPrint createFromCompact(byte[] compactValue) {
        return new FingerPrint(uncompact(compactValue));
    }

    public static boolean validHashValue(byte[] hashValue) {
        if (hashValue.length != HASH_SIZE) {
            return false;
        }
        for (byte b : hashValue) {
            {
                if (0 != b && 1 != b) {
                    return false;
                }
            }
        }
        return true;
    }

    public static boolean validHashValue(String hashValue) {
        if (hashValue.length() != HASH_SIZE) {
            return false;
        }
        for (int i = 0; i < hashValue.length(); ++i) {
            if (‘0‘ != hashValue.charAt(i) && ‘1‘ != hashValue.charAt(i)) {
                return false;
            }
        }
        return true;
    }

    public byte[] compact() {
        return compact(binaryzationMatrix);
    }

    /**
     * 指纹数据按位压缩
     *
     * @param hashValue
     * @return
     */
    private static byte[] compact(byte[] hashValue) {
        byte[] result = new byte[(hashValue.length + 7) >> 3];
        byte b = 0;
        for (int i = 0; i < hashValue.length; ++i) {
            if (0 == (i & 7)) {
                b = 0;
            }
            if (1 == hashValue[i]) {
                b |= 1 << (i & 7);
            } else if (hashValue[i] != 0) {
                throw new IllegalArgumentException("invalid hashValue,every element must be 0 or 1");
            }
            if (7 == (i & 7) || i == hashValue.length - 1) {
                result[i >> 3] = b;
            }
        }
        return result;
    }

    /**
     * 压缩格式的指纹解压缩
     *
     * @param compactValue
     * @return
     */
    private static byte[] uncompact(byte[] compactValue) {
        byte[] result = new byte[compactValue.length << 3];
        for (int i = 0; i < result.length; ++i) {
            if ((compactValue[i >> 3] & (1 << (i & 7))) == 0) {
                result[i] = 0;
            } else {
                result[i] = 1;
            }
        }
        return result;
    }

    /**
     * 字符串类型的指纹数据转为字节数组
     *
     * @param hashValue
     * @return
     */
    private static byte[] toBytes(String hashValue) {
        hashValue = hashValue.replaceAll("\\s", "");
        byte[] result = new byte[hashValue.length()];
        for (int i = 0; i < result.length; ++i) {
            char c = hashValue.charAt(i);
            if (‘0‘ == c) {
                result[i] = 0;
            } else if (‘1‘ == c) {
                result[i] = 1;
            } else {
                throw new IllegalArgumentException("invalid hashValue String");
            }
        }
        return result;
    }

    /**
     * 缩放图像到指定尺寸
     *
     * @param src
     * @param width
     * @param height
     * @return
     */
    private static BufferedImage resize(Image src, int width, int height) {
        BufferedImage result = new BufferedImage(width, height,
                BufferedImage.TYPE_3BYTE_BGR);
        Graphics g = result.getGraphics();
        try {
            g.drawImage(src.getScaledInstance(width, height, Image.SCALE_SMOOTH), 0, 0, null);
        } finally {
            g.dispose();
        }
        return result;
    }

    /**
     * 计算均值
     *
     * @param src
     * @return
     */
    private static int mean(byte[] src) {
        long sum = 0;
        // 将数组元素转为无符号整数
        for (byte b : src) {
            sum += (long) b & 0xff;
        }
        return (int) (Math.round((float) sum / src.length));
    }

    /**
     * 二值化处理
     *
     * @param src
     * @return
     */
    private static byte[] binaryzation(byte[] src) {
        byte[] dst = src.clone();
        int mean = mean(src);
        for (int i = 0; i < dst.length; ++i) {
            // 将数组元素转为无符号整数再比较
            dst[i] = (byte) (((int) dst[i] & 0xff) >= mean ? 1 : 0);
        }
        return dst;

    }

    /**
     * 转灰度图像
     *
     * @param src
     * @return
     */
    private static BufferedImage toGray(BufferedImage src) {
        if (src.getType() == BufferedImage.TYPE_BYTE_GRAY) {
            return src;
        } else {
            // 图像转灰
            BufferedImage grayImage = new BufferedImage(src.getWidth(), src.getHeight(),
                    BufferedImage.TYPE_BYTE_GRAY);
            new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null).filter(src, grayImage);
            return grayImage;
        }
    }

    @Override
    public String toString() {
        return toString(true);
    }

    /**
     * @param multiLine 是否分行
     * @return
     */
    public String toString(boolean multiLine) {
        StringBuffer buffer = new StringBuffer();
        int count = 0;
        for (byte b : this.binaryzationMatrix) {
            buffer.append(0 == b ? ‘0‘ : ‘1‘);
            if (multiLine && ++count % HASH_SIZE == 0) {
                buffer.append(‘
‘);
            }
        }
        return buffer.toString();
    }

    @Override
    public boolean equals(Object obj) {
        if (obj instanceof FingerPrint) {
            return Arrays.equals(this.binaryzationMatrix, ((FingerPrint) obj).binaryzationMatrix);
        } else {
            return super.equals(obj);
        }
    }

    /**
     * 与指定的压缩格式指纹比较相似度
     *
     * @param compactValue
     * @return
     * @see #compare(FingerPrint)
     */
    public float compareCompact(byte[] compactValue) {
        return compare(createFromCompact(compactValue));
    }

    /**
     * @param hashValue
     * @return
     * @see #compare(FingerPrint)
     */
    public float compare(String hashValue) {
        return compare(new FingerPrint(hashValue));
    }

    /**
     * 与指定的指纹比较相似度
     *
     * @param hashValue
     * @return
     * @see #compare(FingerPrint)
     */
    public float compare(byte[] hashValue) {
        return compare(new FingerPrint(hashValue));
    }

    /**
     * 与指定图像比较相似度
     *
     * @param image2
     * @return
     * @see #compare(FingerPrint)
     */
    public float compare(BufferedImage image2) {
        return compare(new FingerPrint(image2));
    }

    /**
     * 比较指纹相似度
     *
     * @param src
     * @return
     * @see #compare(byte[], byte[])
     */
    public float compare(FingerPrint src) {
        if (src.binaryzationMatrix.length != this.binaryzationMatrix.length) {
            throw new IllegalArgumentException("length of hashValue is mismatch");
        }
        return compare(binaryzationMatrix, src.binaryzationMatrix);
    }

    /**
     * 判断两个数组相似度,数组长度必须一致否则抛出异常
     *
     * @param f1
     * @param f2
     * @return 返回相似度(0.0 ~ 1.0)
     */
    private static float compare(byte[] f1, byte[] f2) {
        if (f1.length != f2.length) {
            throw new IllegalArgumentException("mismatch FingerPrint length");
        }
        int sameCount = 0;
        for (int i = 0; i < f1.length; ++i) {
            {
                if (f1[i] == f2[i]) {
                    ++sameCount;
                }
            }
        }
        return (float) sameCount / f1.length;
    }

    public static float compareCompact(byte[] f1, byte[] f2) {
        return compare(uncompact(f1), uncompact(f2));
    }

    public static float compare(BufferedImage image1, BufferedImage image2) {
        return new FingerPrint(image1).compare(new FingerPrint(image2));
    }

    /**
     * @param args
     * @return void
     * @author Guoyh
     * @date 2018/10/12 15:07
     */
    public static void main(String[] args) throws Exception {
        for (int i = 2; i <= 3; i++) {
            FingerPrint fp1 = new FingerPrint(ImageIO.read(new File("G:/oss/pk/" + 2 + ".jpg")));
            FingerPrint fp2 = new FingerPrint(ImageIO.read(new File("G:/oss/pk/" + i + ".jpg")));
            System.out.println("	" + "	"+"G:/oss/pk/" + 2 + ".jpg"+"	"+"与"+"	"+"G:/oss/pk/" + i + ".jpg"+"	"+"两张图片的相似度为:" + fp1.compare(fp2) * 100 + "%");
        }
    }
}
FingerPrint

 

技术分享图片

 

参考:

https://blog.csdn.net/zhuason/article/details/78933250

https://blog.csdn.net/qq_37320823/article/details/80538933

https://blog.csdn.net/10km/article/details/70949272

https://blog.csdn.net/gaoxiang24/article/details/79214834

以上是关于列举一些算法对照片图像进行相似度对比分析比较的主要内容,如果未能解决你的问题,请参考以下文章

OpenCV这么简单为啥不学——1.12使用ssim函数对两张照片进行相似度分析

文本、语音相似度算法

求助,如何对两幅二值图像进行相似度匹配

OpenCV进行图像相似度对比的几种办法

有啥可以对比两张图片得出相似度的软件。

图像视频相似度算法