POJ1061 青蛙的约会 exgcd
Posted dukelv
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ1061 青蛙的约会 exgcd相关的知识,希望对你有一定的参考价值。
这个题虽然很简单,但是有一个比较坑的地方,就是gcd不一定是1,有可能是别的数。所以不能return 1,而是return a;
题干:
Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 Input 输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。 Output 输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible" Sample Input 1 2 3 4 5 Sample Output 4
代码:
#include<iostream> #include<cstdio> #include<cmath> #include<ctime> #include<queue> #include<algorithm> #include<cstring> using namespace std; #define duke(i,a,n) for(int i = a;i <= n;i++) #define lv(i,a,n) for(int i = a;i >= n;i--) #define clean(a) memset(a,0,sizeof(a)) const int INF = 1 << 30; typedef long long ll; typedef double db; template <class T> void read(T &x) { char c; bool op = 0; while(c = getchar(), c < ‘0‘ || c > ‘9‘) if(c == ‘-‘) op = 1; x = c - ‘0‘; while(c = getchar(), c >= ‘0‘ && c <= ‘9‘) x = x * 10 + c - ‘0‘; if(op) x = -x; } template <class T> void write(T x) { if(x < 0) putchar(‘-‘), x = -x; if(x >= 10) write(x / 10); putchar(‘0‘ + x % 10); } ll x,y,m,n,l; ll exgcd(ll a,ll b,ll &x,ll &y) { if(!b) { x = 1; y = 0; return a; } ll t = exgcd(b,a % b,y,x); y -= (a / b * x); return t; } int main() { read(x);read(y);read(m);read(n);read(l); ll b = n - m,a = x - y,x1,y1; if(b < 0) { b = -b; a = -a; } ll ans = exgcd(b,l,x1,y1); if(a % ans != 0) printf("Impossible "); else { ll f = l / ans; printf("%lld ",((x1 * (a / ans)) % f + f) % f); } return 0; }
以上是关于POJ1061 青蛙的约会 exgcd的主要内容,如果未能解决你的问题,请参考以下文章