Luogu P1314 聪明的质监员(二分+前缀和)

Posted coder-uranus

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Luogu P1314 聪明的质监员(二分+前缀和)相关的知识,希望对你有一定的参考价值。

P1314 聪明的质监员

题意

题目描述

(T)是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有(n)个矿石,从(1)(n)逐一编号,每个矿石都有自己的重量(w_i)以及价值(v_i)。检验矿产的流程是:

  1. 给定(m)个区间([L_i,R_i])

  2. 选出一个参数(W)

  3. 对于一个区间([L_i,R_i]),计算矿石在这个区间上的检验值(Y_i)

技术分享图片

这批矿产的检验结果(Y)为各个区间的检验值之和。即:(Y_1+Y_2...+Y_m)

若这批矿产的检验结果与所给标准值(S)相差太多,就需要再去检验另一批矿产。小(T)不想费时间去检验另一批矿产,所以他想通过调整参数(W)的值,让检验结果尽可能的靠近标准值(S),即使得(S-Y)的绝对值最小。请你帮忙求出这个最小值。

输入输出格式

输入格式:

第一行包含三个整数(n,m,S),分别表示矿石的个数、区间的个数和标准值。

接下来的(n)行,每行(2)个整数,中间用空格隔开,第(i+1)行表示(i)号矿石的重量(w_i)和价值(v_i)

接下来的(m)行,表示区间,每行(2)个整数,中间用空格隔开,第(i+n+1)行表示区间([L_i,R_i])的两个端点(L_i)(R_i)。注意:不同区间可能重合或相互重叠。

输出格式:

一个整数,表示所求的最小值。

输入输出样例

输入样例:

5 3 15
1 5
2 5
3 5
4 5
5 5
1 5
2 4
3 3

输出样例:

10

说明

【输入输出样例说明】

(W)(4)的时候,三个区间上检验值分别为(20,5,0),这批矿产的检验结果为 (25),此时与标准值(S)相差最小为(10)

【数据范围】

对于(10 \%)的数据,有(1 leq n,m leq 10)

对于(30 \%)的数据,有(1 leq n,m leq 500)

对于(50 \%)的数据,有(1 leq n,m leq 5,000)

对于(70 \%)的数据,有(1 ≤n,m leq 10,000)

对于(100\%)的数据,有(1 leq n,m leq 200,000, 0<w_i,v_i≤10^6, 0<S leq 10^{12},1 leq L_i leq R_i leq n)

思路

我点错(ans)文件了。 --alecli

今天下午应alecli大佬之邀来刷(NOIP)的各种蓝题,然后就做到了这一道。

开头的那张公式图片看得我一脸懵逼,不过想一想也还是能像清楚的。一共有(n)个物品,每个物品有两个属性(w)(v)。我们选取一个(W),然后对于每一段区间,其中所有(w)属性大于(W)的物品的数量乘上这些物品的(v)值之和,就是这一段区间的(Y)值。把每个区间的(Y)值加起来,就是总(Y)值。题目要求的,就是总(Y)值与给定的数(S)的最小差值。

有两点显然的特性:

  1. 选的(W)越大,每个区间所满足(w)属性大于(W)的物品的数量越大;
  2. 选的(W)越大,这些物品的(v)值之和也越大。

因为(Y)与这两个属性正相关,所以(Y)关于(W)单调递增,那么我们就可以二分(W)的值,来计算(Y)了。

第二个问题就是如何快速地计算(Y)。因为对于没一段区间我们都只询问区间和,所以很容易想到预处理(O(n)),查询(O(1))的前缀和。具体来说我们这样操作:

tmp=0;//统计Y值
memset(s,0,sizeof s);//s是v的前缀和
memset(cnt,0,sizeof cnt);//cnt是数量的前缀和
for(LL i=1;i<=n;i++)//预处理
{
    if(w[i]>=W) s[i]=s[i-1]+v[i],cnt[i]=cnt[i-1]+1;//满足w>=W,对答案有贡献
    else s[i]=s[i-1],cnt[i]=cnt[i-1];//对答案无贡献
}
for(LL i=1;i<=m;i++) tmp+=(s[r[i]]-s[l[i]-1])*(cnt[r[i]]-cnt[l[i]-1]);//查询每一段区间的Y值

顺利(AC)

AC代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MAXN=2e5+5;
LL n,m,S,sum,tmp,ans=LLONG_MAX,L=LLONG_MAX,R=LLONG_MIN;
LL w[MAXN],v[MAXN],l[MAXN],r[MAXN],s[MAXN],cnt[MAXN];
LL read()
{
    LL re=0;
    char ch=getchar();
    while(!isdigit(ch)) ch=getchar();
    while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
    return re;
}
LL check(LL lzq)
{
    tmp=0;
    memset(s,0,sizeof s);
    memset(cnt,0,sizeof cnt);
    for(LL i=1;i<=n;i++)
    {
        if(w[i]>=lzq) s[i]=s[i-1]+v[i],cnt[i]=cnt[i-1]+1;
        else s[i]=s[i-1],cnt[i]=cnt[i-1];
    }
    for(LL i=1;i<=m;i++) tmp+=(s[r[i]]-s[l[i]-1])*(cnt[r[i]]-cnt[l[i]-1]);
    sum=tmp-S;
    if(sum<0) sum=-sum;
    return tmp>S;
}
int main()
{
    n=read(),m=read(),S=read();
    for(LL i=1;i<=n;i++) w[i]=read(),v[i]=read(),L=min(L,w[i]),R=max(R,w[i]);
    for(LL i=1;i<=m;i++) l[i]=read(),r[i]=read();
    while(L<=R)
    {
        LL mid=(L+R)>>1;
        if(!check(mid)) R=mid-1;
        else L=mid+1;
        if(ans>sum) ans=sum;
    }
    printf("%lld",ans);
    return 0;
}

以上是关于Luogu P1314 聪明的质监员(二分+前缀和)的主要内容,如果未能解决你的问题,请参考以下文章

P1314 聪明的质监员

P1314 聪明的质监员

Part2.3 P1314 聪明的质检员 二分答案前缀和优化

luogu P1314 聪明的质监员 x

luogu P1314 聪明的质监员

$Noip2011/Luogu1314$ 聪明的质监员 二分+巧妙前缀和