求树的最大独立集,最小点覆盖,最小支配集 贪心and树形dp
Posted cwolf9
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了求树的最大独立集,最小点覆盖,最小支配集 贪心and树形dp相关的知识,希望对你有一定的参考价值。
目录
(有任何问题欢迎留言或私聊&&欢迎交流讨论哦
求树的最大独立集,最小点覆盖,最小支配集
三个定义
最大独立集:
?对一个图选出尽量多的点组成一个集合,满足这些点之间没有边相连。所有独立集中,顶点数最多的称作最大独立集。
最小点覆盖:
?对一个图选出尽量少的点组成一个集合,满足图中所有的边均有端点属于这个集合。所有覆盖集中,顶点数最少的称作最小点覆盖。
最小支配集:
?对一个图选出尽量少的点组成一个集合,满足图中剩余的点都和集合中的点有边相连。从集合中出去任何一个点之后若不再是支配集,则此支配集是极小支配集。所有支配集中,顶点数最少的称作最小支配集。
贪心解法
树的最大独立集:
?先求一遍dfs序,倒序遍历。若此节点未被标记,则将此端点加入独立集,并标记此节点和其父节点。
树的最小点覆盖:
?先求一遍dfs序,倒序遍历。若此节点及其父节点均未被标记,则将其父节点加入覆盖集,并标记此节点及其父节点。
树的最小支配集:
?先求一遍dfs序,倒序遍历。若此节点未被标记,把其父节点加入支配集(前提是它不在支配集中),然后标记此节点,父节点及其爷爷节点。
树形DP解法
树的最大独立集:
(dp[i][0])表示点i在独立集中;(dp[i][1])表示点i不在独立集中
[
dp[u][0] = 1 + sum dp[v][1];dp[u][1] = sum max(dp[v][0], dp[v][1]);
]
树的最小点覆盖:
(dp[i][0])表示点i在点覆盖集中;(dp[i][1])表示点i不在点覆盖集中
[
dp[u][0] = 1 + sum min(dp[v][0], dp[v][1]);dp[u][1] = sum dp[v][0];
]
树的最小支配集:
(dp[i][0])表示点i属于支配集,并且以点i为根的子树都被覆盖了的情况下支配集中所包含最少点的个数
(dp[i][1])表示点i不属于支配集合,且以i为根的子树都被覆盖,且i被其中不少于一个子节点覆盖的情况下支配集所包含最少点的个数
(dp[i][2])表示点i不属于支配集合,且以i为根的子树都被覆盖,且i没被子节点覆盖的情况下支配集中所包含最少点的个数.即i将被父节点覆盖
[
dp[u][0] = 1 + sum min(dp[v][0],dp[v][1],dp[v][2]);dp[u][2] = sum dp[v][1];dp[u][2]=min(dp[u][2],INF);if(dp[v][0]<=dp[v][1]) inc = 0;(if;0;always;0)else;inc = min(inc, dp[v][0]-dp[v][1]);if(u;no;son)dp[u][1] = INF;else; dp[u][1] = sum min(dp[v][0],dp[v][1])+inc;
]
参考博文:Ash-ly
以上是关于求树的最大独立集,最小点覆盖,最小支配集 贪心and树形dp的主要内容,如果未能解决你的问题,请参考以下文章