链表应用:一元多项式运算器。
Posted hyattxia
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了链表应用:一元多项式运算器。相关的知识,希望对你有一定的参考价值。
链表应用:一元多项式运算器。
基本要求:
(1)输入并建立多项式,并用友好的界面显示多项式,如,8x3-6x2+8显示为8x^3-6x^2+8;
(2)计算两个多项式的加法和减法;
(3)给定x,计算多项式在x处的值
代码如下
#include<stdio.h> #include<math.h> #include<string.h> #include<stdlib.h> typedef struct Polynode{ int coef; int exp; Polynode *next; }Polynode, *Polylist; void Initlist(Polylist *L); Polylist Createlist(Polylist L); void Showlist(Polylist L); void PolyAdd(Polylist polya, Polylist polyb, Polylist polyc); void PolySub(Polylist polya, Polylist polyb, Polylist polyc); int evaluationAtX(Polylist L, int x); void Initlist(Polylist *L){ *L = (Polylist)malloc(sizeof(Polylist)); (*L)->next = NULL; } /*创建存储多项式的链表,输入书系数有小变大*/ Polylist Createlist(Polylist L){ Polynode *pre, *rear; pre = rear = L; rear = (Polynode *)malloc(sizeof(Polynode)); scanf("%d %d", &rear->coef, &rear->exp); while(rear->coef){ pre->next = rear; pre = rear; rear = (Polynode*)malloc(sizeof(Polynode)); scanf("%d %d", &rear->coef, &rear->exp); } free(rear); pre->next = NULL; return L; } //输出多项式,注意格式,还有显示的细节 void Showlist(Polylist L){ Polynode *p = L->next; if(p->exp == 0){ printf("%d", p->coef); } else{ printf("%dx^%d", p->coef, p->exp); } for(p = p->next; p != NULL; p = p->next){ if(p->exp == 0 ){ if(p->coef < 0) printf("%d", p->coef); else printf("+%d", p->coef); } else{ if(p->coef < 0){ if(p->coef == -1 && p->exp == 1){ printf("-x"); } else if(p->coef != -1 && p->exp == 1){ printf("%dx", p->coef); } else if(p->coef == -1 && p->exp != 1){ printf("-x^%d", p->exp); } else{ printf("%dx^%d", p->coef, p->exp); } } else{ if(p->coef == 1 && p->exp == 1){ printf("+x"); } else if(p->coef != 1 && p->exp == 1){ printf("+%dx", p->coef); } else if(p->coef == 1 && p->exp != 1){ printf("+x^%d", p->exp); } else{ printf("+%dx^%d", p->coef, p->exp); } } } } printf(" "); } /*polyc链表用来保存加和得到的结果,不能利用现有链表节点,也不能销毁链表节点 ,不然操作只是一次性的 以下函数实现polyc = polya + polyb*/ void PolyAdd(Polylist polya, Polylist polyb, Polylist polyc){ Polynode *p, *q, *pre, *rear; int sum; p = polya->next; q = polyb->next; pre = rear = polyc; while(p != NULL && q != NULL){//系数之间大小只有三种情况,分类处理 if(p->exp < q->exp){ rear = (Polynode*)malloc(sizeof(Polynode)); rear->coef = p->coef; rear->exp = p->exp; pre->next = rear; pre = rear; p = p->next; } else if(p->exp == q->exp){//只有系数相等时才进行运算 sum = p->coef + q->coef; if(sum != 0){ rear = (Polynode*)malloc(sizeof(Polynode)); rear->coef = sum; rear->exp = p->exp; pre->next = rear; pre = rear; p = p->next; q = q->next; } else{ p = p->next; q = q->next; } } else{ rear = (Polynode*)malloc(sizeof(Polynode)); rear->coef = q->coef; rear->exp = q->exp; pre->next = rear; pre = rear; q = q->next; } } //把没有处理完的多项式进行处理 if(p != NULL){ while(p != NULL){ rear = (Polynode*)malloc(sizeof(Polynode)); rear->coef = p->coef; rear->exp = p->exp; pre->next = rear; pre = rear; p = p->next; } } if(q != NULL){ while(q != NULL){ rear = (Polynode*)malloc(sizeof(Polynode)); rear->coef = q->coef; rear->exp = q->exp; pre->next = rear; pre = rear; q = q->next; } } rear->next = NULL; } /*其实也可以在加法的代码上稍加改动便可以实现减法,但是感觉这样会使代码比较长,所以我选择用: 多项式减法其实就是多项式加法,实现polya - polyb*/ void PolySub(Polylist polya, Polylist polyb, Polylist polyc){ Polylist t; Initlist(&t); Polynode *pre, *rear; pre = rear = t; //找一个中间链表t,来存储 -polyb for(Polynode *p = polyb->next; p != NULL; p = p->next){ rear = (Polynode*)malloc(sizeof(Polynode)); rear->coef = -1 * p->coef; rear->exp = p->exp; pre->next = rear; pre = rear; } pre->next = NULL; PolyAdd(polya, t, polyc); pre = t; while(pre != NULL){//释放掉 t rear = pre->next; free(pre); pre = rear; } } //计算多项式在x = x时的值 int evaluationAtX(Polylist L, int x){ int sum = 0; for(Polynode *p = L->next; p != NULL; p = p->next){ sum += p->coef * pow(x, p->exp); } return sum; } int main(){ Polylist La, Lb, Lc, Ld; Initlist(&La); Initlist(&Lb); Initlist(&Lc); Initlist(&Ld); La = Createlist(La); printf("La = "); Showlist(La); Lb = Createlist(Lb); printf("Lb = "); Showlist(Lb); PolyAdd(La, Lb, Lc); printf("Lc = "); Showlist(Lc); PolySub(La, Lb, Ld); printf("Ld = "); Showlist(Ld); int x = 2; printf("lc(%d) = %d ", x, evaluationAtX(Lc, x)); return 0; }
运行结果如下:
以上是关于链表应用:一元多项式运算器。的主要内容,如果未能解决你的问题,请参考以下文章