upc 3026 Exponial

Posted kissheart

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了upc 3026 Exponial相关的知识,希望对你有一定的参考价值。

Exponial

时间限制: 1 Sec  内存限制: 64 MB
提交: 229  解决: 54
[提交] [状态] [讨论版] [命题人:外部导入]

题目描述

技术分享图片
Illustration of exponial(3) (not to scale), Picture by C.M. de Talleyrand-Périgord via Wikimedia Commons Everybody loves big numbers (if you do not, you might want to stop reading at this point). There are many ways of constructing really big numbers known to humankind, for instance:
技术分享图片
In this problem we look at their lesser-known love-child the exponial , which is an operation de?ned for all positive integers n as
技术分享图片
For example, exponial(1) = 1 and  技术分享图片which is already pretty big. Note that exponentiation is right-associative:  技术分享图片.
Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you to write a program which computes exponial(n) mod m (the remainder of exponial(n) when dividing by m).

 

输入

The input consists of two integers n (1 ≤ n ≤ 109 ) and m (1 ≤ m ≤ 109 ).

 

输出

Output a single integer, the value of exponial(n) mod m.

 

样例输入

2 42

 

样例输出

2

题意

给一个N,M,求技术分享图片模M的结果。

分析

欧拉降幂的经典例题

欧拉降幂公式:

技术分享图片

写递归求答案就可以了。

技术分享图片
///  author:Kissheart  ///
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<vector>
#include<stdlib.h>
#include<math.h>
#include<queue>
#include<deque>
#include<ctype.h>
#include<map>
#include<set>
#include<stack>
#include<string>
#define INF 0x3f3f3f3f
#define FAST_IO ios::sync_with_stdio(false)
const double PI = acos(-1.0);
const double eps = 1e-6;
const int MAX=1e6+10;
long long int mod;
typedef long long ll;
using namespace std;
#define gcd(a,b) __gcd(a,b)
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
inline ll qpow(ll a,ll b,ll mod){ll r=1,t=a; while(b){if(b&1)r=(r*t)%mod;b>>=1;t=(t*t)%mod;}return r;}
//inline ll inv1(ll b){return qpow(b,mod-2);}
inline ll exgcd(ll a,ll b,ll &x,ll &y){if(!b){x=1;y=0;return a;}ll r=exgcd(b,a%b,y,x);y-=(a/b)*x;return r;}
inline ll read(){ll x=0,f=1;char c=getchar();for(;!isdigit(c);c=getchar()) if(c==-) f=-1;for(;isdigit(c);c=getchar()) x=x*10+c-0;return x*f;}
//freopen( "in.txt" , "r" , stdin );
//freopen( "data.txt" , "w" , stdout );

ll a[]={0,1,2,9,(1<<18)},n;
ll phi(ll n)
{
    ll ans=n;
    for (ll i=2;i*i<=n;i++)
    {
        if(n%i==0)
        {
            ans-=ans/i;
            while(n%i==0)
                n/=i;
        }
    }
    if(n>1)
        ans-=ans/n;
    return ans;
}


ll f(ll n,ll m)
{
    if(m==1) return 1;
    if(n<=4)
    {
        if(a[n]>=m) return a[n]%m+m;
        return a[n];
    }
    ll exp=f(n-1,phi(m));
    return qpow(n,exp,m)+m;
}
int main()
{

    scanf("%lld%lld",&n,&mod);
    ll exp=f(n-1,phi(mod));
    ll ans=qpow(n,exp,mod)%mod;
    printf("%lld
",ans%mod);

    return 0;
}
View Code

 

以上是关于upc 3026 Exponial的主要内容,如果未能解决你的问题,请参考以下文章

计蒜客 17414 Exponial 指数降幂公式

[数学][欧拉降幂定理]Exponial

NCPC2016-E-Exponial

Exponial (欧拉定理+指数循环定理+欧拉函数+快速幂)

提高读取UPC-A条码Objective-C(Xcode)的速度

详细介绍光纤跳线接口类型PC, APC, UPC