pytorch 检测图片中是否有人

Posted wzyuan

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pytorch 检测图片中是否有人相关的知识,希望对你有一定的参考价值。

照搬pytorch官方代码,只是将数据集换成了INRIAPerson数据集中的train和test文件夹。

贴下代码和效果,代码是官方的,就不详细解释了。

# License: BSD
# Author: Sasank Chilamkurthy

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

plt.ion()   # interactive mode
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
    train: transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    val: transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = person
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in [train, val]}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)
              for x in [train, val]}
dataset_sizes = {x: len(image_datasets[x]) for x in [train, val]}
class_names = image_datasets[train].classes

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def imshow(inp, title=None):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated


# Get a batch of training data
inputs, classes = next(iter(dataloaders[train]))

# Make a grid from batch
out = torchvision.utils.make_grid(inputs)

imshow(out, title=[class_names[x] for x in classes])

技术分享图片

def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print(Epoch {}/{}.format(epoch, num_epochs - 1))
        print(- * 10)

        # Each epoch has a training and validation phase
        for phase in [train, val]:
            if phase == train:
                scheduler.step()
                model.train()  # Set model to training mode
            else:
                model.eval()   # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0

            # Iterate over data.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # zero the parameter gradients
                optimizer.zero_grad()

                # forward
                # track history if only in train
                with torch.set_grad_enabled(phase == train):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    # backward + optimize only if in training phase
                    if phase == train:
                        loss.backward()
                        optimizer.step()

                # statistics
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print({} Loss: {:.4f} Acc: {:.4f}.format(
                phase, epoch_loss, epoch_acc))

            # deep copy the model
            if phase == val and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())

        print()

    time_elapsed = time.time() - since
    print(Training complete in {:.0f}m {:.0f}s.format(
        time_elapsed // 60, time_elapsed % 60))
    print(Best val Acc: {:4f}.format(best_acc))

    # load best model weights
    model.load_state_dict(best_model_wts)
    return model
def visualize_model(model, num_images=6):
    was_training = model.training
    model.eval()
    images_so_far = 0
    fig = plt.figure()

    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders[val]):
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images//2, 2, images_so_far)
                ax.axis(off)
                ax.set_title(predicted: {}.format(class_names[preds[j]]))
                imshow(inputs.cpu().data[j])

                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)

model_ft = model_ft.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                       num_epochs=25)
Epoch 0/24
----------
train Loss: 0.4124 Acc: 0.8477
val Loss: 0.0737 Acc: 0.9744

Epoch 1/24
----------
train Loss: 0.2891 Acc: 0.9023
val Loss: 0.0836 Acc: 0.9703

Epoch 2/24
----------
train Loss: 0.3094 Acc: 0.9050
val Loss: 0.0614 Acc: 0.9771

Epoch 3/24
----------
train Loss: 0.2308 Acc: 0.9279
val Loss: 0.0429 Acc: 0.9865

Epoch 4/24
----------
train Loss: 0.1748 Acc: 0.9498
val Loss: 0.0331 Acc: 0.9906

Epoch 5/24
----------
train Loss: 0.2252 Acc: 0.9301
val Loss: 0.0702 Acc: 0.9906

Epoch 6/24
----------
train Loss: 0.1726 Acc: 0.9531
val Loss: 0.0442 Acc: 0.9852

Epoch 7/24
----------
train Loss: 0.1595 Acc: 0.9536
val Loss: 0.0359 Acc: 0.9906

Epoch 8/24
----------
train Loss: 0.1310 Acc: 0.9651
val Loss: 0.0355 Acc: 0.9892

Epoch 9/24
----------
train Loss: 0.1172 Acc: 0.9689
val Loss: 0.0325 Acc: 0.9906

Epoch 10/24
----------
train Loss: 0.1070 Acc: 0.9733
val Loss: 0.0515 Acc: 0.9838

Epoch 11/24
----------
train Loss: 0.1304 Acc: 0.9683
val Loss: 0.0452 Acc: 0.9892

Epoch 12/24
----------
train Loss: 0.1164 Acc: 0.9656
val Loss: 0.0424 Acc: 0.9892

Epoch 13/24
----------
train Loss: 0.0751 Acc: 0.9809
val Loss: 0.0396 Acc: 0.9906

Epoch 14/24
----------
train Loss: 0.1091 Acc: 0.9749
val Loss: 0.0279 Acc: 0.9946

Epoch 15/24
----------
train Loss: 0.0751 Acc: 0.9842
val Loss: 0.0352 Acc: 0.9906

Epoch 16/24
----------
train Loss: 0.1353 Acc: 0.9705
val Loss: 0.0413 Acc: 0.9879

Epoch 17/24
----------
train Loss: 0.0957 Acc: 0.9787
val Loss: 0.0332 Acc: 0.9906

Epoch 18/24
----------
train Loss: 0.1091 Acc: 0.9689
val Loss: 0.0317 Acc: 0.9906

Epoch 19/24
----------
train Loss: 0.1101 Acc: 0.9700
val Loss: 0.0402 Acc: 0.9879

Epoch 20/24
----------
train Loss: 0.1133 Acc: 0.9754
val Loss: 0.0392 Acc: 0.9892

Epoch 21/24
----------
train Loss: 0.0970 Acc: 0.9776
val Loss: 0.0424 Acc: 0.9865

Epoch 22/24
----------
train Loss: 0.0865 Acc: 0.9814
val Loss: 0.0348 Acc: 0.9919

Epoch 23/24
----------
train Loss: 0.1319 Acc: 0.9656
val Loss: 0.0341 Acc: 0.9892

Epoch 24/24
----------
train Loss: 0.0997 Acc: 0.9771
val Loss: 0.0328 Acc: 0.9906

Training complete in 9m 32s
Best val Acc: 0.994602
In [30]:

visualize_model(model_ft)
visualize_model(model_ft)

技术分享图片技术分享图片技术分享图片技术分享图片技术分享图片技术分享图片技术分享图片

model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param.requires_grad = False

# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)

model_conv = model_conv.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that only parameters of final layer are being optimized as
# opoosed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
model_conv = train_model(model_conv, criterion, optimizer_conv,
                         exp_lr_scheduler, num_epochs=25)
Epoch 0/24
----------
train Loss: 0.3994 Acc: 0.8466
val Loss: 0.2137 Acc: 0.9109

Epoch 1/24
----------
train Loss: 0.2783 Acc: 0.8963
val Loss: 0.0649 Acc: 0.9744

Epoch 2/24
----------
train Loss: 0.2976 Acc: 0.8870
val Loss: 0.0577 Acc: 0.9811

Epoch 3/24
----------
train Loss: 0.2873 Acc: 0.9039
val Loss: 0.0477 Acc: 0.9825

Epoch 4/24
----------
train Loss: 0.3214 Acc: 0.8843
val Loss: 0.0499 Acc: 0.9798

Epoch 5/24
----------
train Loss: 0.3244 Acc: 0.8772
val Loss: 0.0483 Acc: 0.9798

Epoch 6/24
----------
train Loss: 0.2855 Acc: 0.8985
val Loss: 0.0446 Acc: 0.9825

Epoch 7/24
----------
train Loss: 0.2425 Acc: 0.9121
val Loss: 0.0460 Acc: 0.9798

Epoch 8/24
----------
train Loss: 0.2070 Acc: 0.9219
val Loss: 0.0390 Acc: 0.9879

Epoch 9/24
----------
train Loss: 0.2189 Acc: 0.9127
val Loss: 0.0408 Acc: 0.9825

Epoch 10/24
----------
train Loss: 0.2243 Acc: 0.9148
val Loss: 0.0577 Acc: 0.9825

Epoch 11/24
----------
train Loss: 0.2042 Acc: 0.9236
val Loss: 0.0519 Acc: 0.9852

Epoch 12/24
----------
train Loss: 0.2425 Acc: 0.9083
val Loss: 0.0440 Acc: 0.9838

Epoch 13/24
----------
train Loss: 0.2127 Acc: 0.9198
val Loss: 0.0454 Acc: 0.9865

Epoch 14/24
----------
train Loss: 0.2479 Acc: 0.9045
val Loss: 0.0551 Acc: 0.9771

Epoch 15/24
----------
train Loss: 0.2562 Acc: 0.8990
val Loss: 0.0491 Acc: 0.9852

Epoch 16/24
----------
train Loss: 0.2104 Acc: 0.9143
val Loss: 0.0448 Acc: 0.9852

Epoch 17/24
----------
train Loss: 0.2606 Acc: 0.8974
val Loss: 0.0480 Acc: 0.9798

Epoch 18/24
----------
train Loss: 0.2474 Acc: 0.9067
val Loss: 0.0639 Acc: 0.9798

Epoch 19/24
----------
train Loss: 0.2159 Acc: 0.9176
val Loss: 0.0495 Acc: 0.9852

Epoch 20/24
----------
train Loss: 0.2107 Acc: 0.9170
val Loss: 0.0482 Acc: 0.9838

Epoch 21/24
----------
train Loss: 0.2128 Acc: 0.9121
val Loss: 0.0522 Acc: 0.9838

Epoch 22/24
----------
train Loss: 0.2263 Acc: 0.9176
val Loss: 0.0459 Acc: 0.9852

Epoch 23/24
----------
train Loss: 0.1907 Acc: 0.9329
val Loss: 0.0460 Acc: 0.9906

Epoch 24/24
----------
train Loss: 0.2302 Acc: 0.9181
val Loss: 0.0425 Acc: 0.9879

Training complete in 4m 31s
Best val Acc: 0.990553
In [33]:

visualize_model(model_conv)
visualize_model(model_conv)

plt.ioff()
plt.show()

技术分享图片技术分享图片技术分享图片技术分享图片技术分享图片技术分享图片技术分享图片

微调和特征提取两种方法的效果都很棒

 

以上是关于pytorch 检测图片中是否有人的主要内容,如果未能解决你的问题,请参考以下文章

有人可以在快速数组中给出“如果不存在则追加”方法的片段吗?

目标检测SSD模型pytorch版的权重参数

Python代码阅读(第13篇):检测列表中的元素是否都一样

检测 NaN 的 Pytorch 操作

在一个片段中检测Recyclerview的上下滑动,我怎么做?

物体检测object detection object recognition和coco数据集 动手学深度学习v2 pytorch