指导手册04:运行MapReduce

Posted soft2408

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了指导手册04:运行MapReduce相关的知识,希望对你有一定的参考价值。

指导手册04:运行MapReduce

 

Part 1:运行单个MapReduce任务

情景描述:

   本次任务要求对HDFS目录中的数据文件/user/root/email_log.txt进行计算处理,统计出第个用户的登录次数。

   情景分析:统计出每个用户登录次数,等同于求出每个email出现的次数,可以进一步抽象为统计每个单司出现的频次。在Hadoop官方提供的示例包中,正好有进行记频统计的模块。

1.Hadoop官方的示例程序包

在集群服务器的本地目录”$HADOOP_HOME/share/hadoop/mapreduce/中可发现示例程序包hadoop-mapreduce-examples-2.6.4.jar

 技术分享图片

 

 技术分享图片

 

模块名称

内容

multifilewc

统计多个文件中单词的数量。

pi

应用quasi-Monte Carlo 算法来估算圆周率π的值。

randomtextwriter

在每个数据节点随机生成1个10GB的文本文件。

wordcount

对输入文件中的单词进行频数统计。

wordmean

计算输入文件中单词的平均长度。

wordmedian

计算输入文件中单词长度的中位数。

wordstandarddeviation

计算输入文件中单词长度的标准差。

 

2.提交MapReduce任务给集群运行

提交MapReduce任务,通常使用hadoop jar 命令。它的基本用法格式如下

Hadoop jar <jar> [mainClass] args

因为hadoop jar 命令的附带参数较多,下面结合实际任务,对它的各项参数依次进行说明。

例:

[[email protected] opt]# hadoop jar  $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-exampes-2.6.4.jar wordcount /user/root/emil_log.txt  /user/root/output (emil_log.txt请参考指导手册03上传)

参数说明:

$HADOOP_HOME:指主机中设置的环境变量

hadoop-mapreduce-exampes-2.6.4.jar :Hadoop官方提供的示例程序包

wordcount:程序中的主类名称

/user/root/emil_log.txt:HDFS上的输入文件名称

/user/root/output: HDFS上输出的文件目录

3.执行结果查看

技术分享图片

 

Part 2: 管理多个MapReduce任务

情景描述:

Hadoop是一个多任务系统,它可以同时为多个用户、多个作业处理多个数据集。对于提交到Hadoop集群的多个任务,用户如何进行有效管理。比如,想知道集群完成了哪些任务;执行结果是成功还是失败;怎么检查任务的实际执行情况;如果某个任务执行时间过长,怎么中断它。

   当用户提交了多个任务后,通常可以使用资源管理器的服务接口,对提交后的任务进行查询。当发现有异常时,可以中断当前作业或查询指定的日志文件。

 

1.查询MapReduce任务

例:调用Hadoop的示例程序包,采用Qqusi-Monte Carlo算法来估算PI的值。后面两个参数代表Map数量与每个Map的测量次数,参数的值越大,计算出来的结果精度越高。

Hadoop jar  /usr/local/hadoop-2.6.4/share/hadoop/mapredduce/hadoop-mapreduce-example-2.6.2.jar pi  10  100

查看MapReduce任务的计算机资源使用情况:http://master:8088,再单击左侧菜单栏的”Nodes”.

 技术分享图片

 

可以看到集群可用内存共有6GB,被使用了5.5G,剩余512MB,CPU核心有3个。

请运行程序,将你的集群信息填写如下:

可用内存

内存使用

剩余内存

CPU核心个数

 

 

 

 

继续查询当前任务的信息,单击左侧菜单栏中的“Applicatiions”,或者直接访问http://master:8088/cluster/apps显示如下结果。

 技术分享图片

它的状态值为“RUNNNING”,表示这个任务正执行中。

2.同时提交两个任务,进行观察

示例任务1:统计用户登录次数

[[email protected] opt]# hadoop jar  $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-exampes-2.6.4.jar wordcount /user/root/emil_log.txt  /user/root/output1 (emil_log.txt请参考指导手册03上传) 

示例任务2:执行估算PI值

[[email protected] opt]# Hadoop jar  /usr/local/hadoop-2.6.4/share/hadoop/mapredduce/hadoop-mapreduce-example-2.6.2.jar pi  10  100

提交两个作业后,观察集群上的计算机资源使用情况。 

技术分享图片

 

作业0001的状态“RUNNING”,表示它正在执行中。而作业0002的状态是“ACCEPTED”,表示它已被资源管理器YARN接受,目前在等待被分配计算资源,只有当计算资源满足后,才会开始执行。

3.中断MapReduce任务

人为中断第1个作业:点击任务1的ID进入任务1,点击图中Kill Application即可中断该任务。 

 技术分享图片 

  再次刷新任务界面,可以发现原来的作业1己被中断。

 技术分享图片

 

 

 

以上是关于指导手册04:运行MapReduce的主要内容,如果未能解决你的问题,请参考以下文章

Moodle安装指导手册

Moodle安装指导手册

kubernetes快速指导手册管理 kubernetes 对象

kubernetes快速指导手册管理 kubernetes 对象

Star UML指导手册

Gitlab开发指导手册