2016-2017 ACM-ICPC, NEERC, Northern Subregional Contest Problem I. Integral Polygons

Posted destr

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2016-2017 ACM-ICPC, NEERC, Northern Subregional Contest Problem I. Integral Polygons相关的知识,希望对你有一定的参考价值。

题目来源:http://codeforces.com/group/aUVPeyEnI2/contest/229510
时间限制:2s
空间限制:256MB
题目大意:
给定一个凸多边形,有一种连接两个顶点可以将多边形分成两个非空的面积为整数的图形,询问这种线有多少条。
数据范围:
4 ≤ n ≤ 200 000
?109 ≤ xi, yi ≤ 109
样例:
技术分享图片
技术分享图片
代码:

#include <algorithm>
#include <iostream>
#include <cstring>
#include <vector>
#include <cstdio>
#include <string>
#include <cmath>
#include <queue>
#include <set>
#include <map>
#include <complex>
using namespace std;
typedef long long ll;
typedef long double db;
typedef pair<int,int> pii;
typedef vector<int> vi;
#define de(x) cout << #x << "=" << x << endl
#define rep(i,a,b) for(int i=a;i<(b);++i)
#define all(x) (x).begin(),(x).end()
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define pi acos(-1.0)
#define mem0(a) memset(a,0,sizeof(a))
#define memf(b) memset(b,false,sizeof(b))
#define maxn 401010
int x[maxn],y[maxn];
int va[maxn],pre[maxn],p[maxn][3][3][3];
int across(int a,int b,int c,int d)
{
    return a*d-b*c;
}
int main()
{
    freopen("integral.in","r",stdin);
    freopen("integral.out","w",stdout);
    mem0(p);
    mem0(pre);
    int n;
    cin>>n;
    rep(i,1,n+1)
    {
        cin>>x[i]>>y[i];
        x[i]=x[i]&1;
        y[i]=y[i]&1;
        x[i+n]=x[i];
        y[i+n]=y[i];
    }
    rep(i,1,n<<1|1)
    {
        va[i]=across(x[i-1],y[i-1],x[i],y[i]);
        pre[i]=pre[i-1]+va[i];
    }
    if(pre[n+1]&1)
    {
        cout<<"0"<<endl;
        return 0;
    }
//  rep(i,1,n<<1|1)
//  {
//      printf("%5d",x[i]);
//  }
//  cout<<endl;
//  rep(i,1,n<<1|1)
//  {
//      printf("%5d",y[i]);
//  }
//  cout<<endl;
//  rep(i,1,n<<1|1)
//  {
//      printf("%5d",pre[i]);
//  }
//  cout<<endl;
    rep(i,1,n<<1|1)rep(a,0,2)rep(b,0,2)rep(c,0,2)
    {
        if(x[i]==a&&y[i]==b&&(pre[i]&1)==c)
        p[i][a][b][c]=p[i-1][a][b][c]+1;
        else
        p[i][a][b][c]=p[i-1][a][b][c];
    }
//  cout<<endl;
//  rep(i,1,n+1)
//  {
//      rep(a,0,2)
//      rep(b,0,2)
//      rep(c,0,2)
//      {
//          printf("%5d",p[i][a][b][c]);
//      }
//      cout<<endl;
//  }
//  cout<<endl;
    ll ans=0;
    rep(i,1,n+1)
    {
        int l=i+2,r=n+i-2;
        rep(a,0,2)rep(b,0,2)rep(c,0,2)
        {
            int t=((x[i]*b-y[i]*a+c-pre[i])&1);
            if(t==0)ans+=p[r][a][b][c]-p[l-1][a][b][c];
//          printf("%5d",ans);
        }
//      cout<<endl;
    }
    
    cout<<ans/2<<endl;
    return 0;
}











以上是关于2016-2017 ACM-ICPC, NEERC, Northern Subregional Contest Problem I. Integral Polygons的主要内容,如果未能解决你的问题,请参考以下文章

2016-2017 ACM-ICPC, NEERC, Moscow Subregional Contest Problem L. Lazy Coordinator

2013-2014 ACM-ICPC, NEERC, Eastern Subregional Contest PART (7/10)

2017-2018 ACM-ICPC, NEERC, Moscow Subregional Contest

模拟赛小结:2014-2015 ACM-ICPC, NEERC, Southern Subregional Contest

GYM1014092010-2011 ACM-ICPC, NEERC, Western Subregional Contest

2017-2018 ACM-ICPC Northern Eurasia (Northeastern European Regional) Contest (NEERC 17)