1*1卷积核的理解和作用
Posted lqc-nogi
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了1*1卷积核的理解和作用相关的知识,希望对你有一定的参考价值。
权值共享基本上有两种方法:
- 在同一特征图和不同通道特征图都使用共享权值,这样的卷积参数是最少的,例如上一层为30*30*40,当使用3*3*120的卷积核进行卷积时,卷积参数为:3*3*120个.(卷积跟mlp有区别也有联系一个神经元是平面排列,一个是线性排列)
- 第二种只在同一特征图上使用共享权值,根据上面的例子,则卷积参数为:3*3*40*120.
1×1的卷积大概有两个方面的作用吧:
1. 实现跨通道的交互和信息整合
2. 进行卷积核通道数的降维和升维
以GoogLeNet的3a模块为例,输入的feature map是28×28×192,3a模块中1×1卷积通道为64,3×3卷积通道为128,5×5卷积通道为32,如果是左图结构,那么卷积核参数为1×1×192×64+3×3×192×128+5×5×192×32,而右图对3×3和5×5卷积层前分别加入了通道数为96和16的1×1卷积层,这样卷积核参数就变成了1×1×192×64+(1×1×192×96+3×3×96×128)+(1×1×192×16+5×5×16×32),参数大约减少到原来的三分之一。同时在并行pooling层后面加入1×1卷积层后也可以降低输出的feature map数量,左图pooling后feature map是不变的,再加卷积层得到的feature map,会使输出的feature map扩大到416,如果每个模块都这样,网络的输出会越来越大。而右图在pooling后面加了通道为32的1×1卷积,使得输出的feature map数降到了256。GoogLeNet利用1×1的卷积降维后,得到了更为紧凑的网络结构,虽然总共有22层,但是参数数量却只是8层的AlexNet的十二分之一。
比如输入是28x28x192(WxDxK,K代表通道数),然后在3x3的卷积核,卷积通道数为128,那么卷积的参数有3x3x192x128,其中前两个对应的每个卷积里面的参数,后两个对应的卷积总的个数(一般理解为,卷积核的权值共享只在每个单独通道上有效,至于通道与通道间的对应的卷积核是独立不共享的,所以这里是192x128)。
以上是关于1*1卷积核的理解和作用的主要内容,如果未能解决你的问题,请参考以下文章