keras Lambda 层
Posted jins-note
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了keras Lambda 层相关的知识,希望对你有一定的参考价值。
Lambda层
keras.layers.core.Lambda(function, output_shape=None, mask=None, arguments=None)
本函数用以对上一层的输出施以任何Theano/TensorFlow表达式
如果你只是想对流经该层的数据做个变换,而这个变换本身没有什么需要学习的参数,那么直接用Lambda Layer是最合适的了。
导入的方法是
from keras.layers.core import Lambda
Lambda函数接受两个参数,第一个是输入张量对输出张量的映射函数,第二个是输入的shape对输出的shape的映射函数。
参数
-
function:要实现的函数,该函数仅接受一个变量,即上一层的输出
-
output_shape:函数应该返回的值的shape,可以是一个tuple,也可以是一个根据输入shape计算输出shape的函数
-
mask: 掩膜
-
arguments:可选,字典,用来记录向函数中传递的其他关键字参数
例子
# add a x -> x^2 layer model.add(Lambda(lambda x: x ** 2)) # add a layer that returns the concatenation# of the positive part of the input and # the opposite of the negative part def antirectifier(x): x -= K.mean(x, axis=1, keepdims=True) x = K.l2_normalize(x, axis=1) pos = K.relu(x) neg = K.relu(-x) return K.concatenate([pos, neg], axis=1) def antirectifier_output_shape(input_shape): shape = list(input_shape) assert len(shape) == 2 # only valid for 2D tensors shape[-1] *= 2 return tuple(shape) model.add(Lambda(antirectifier, output_shape=antirectifier_output_shape))
输入shape
任意,当使用该层作为第一层时,要指定input_shape
输出shape
由output_shape参数指定的输出shape,当使用tensorflow时可自动推断
================================================
keras Lambda自定义层实现数据的切片,Lambda传参数
1、代码如下:
import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation,Reshape from keras.layers import merge from keras.utils.visualize_util import plot from keras.layers import Input, Lambda from keras.models import Model def slice(x,index): return x[:,:,index] a = Input(shape=(4,2)) x1 = Lambda(slice,output_shape=(4,1),arguments={‘index‘:0})(a) x2 = Lambda(slice,output_shape=(4,1),arguments={‘index‘:1})(a) x1 = Reshape((4,1,1))(x1) x2 = Reshape((4,1,1))(x2) output = merge([x1,x2],mode=‘concat‘)
model = Model(a, output) x_test = np.array([[[1,2],[2,3],[3,4],[4,5]]]) print model.predict(x_test) plot(model, to_file=‘lambda.png‘,show_shapes=True)
2、注意Lambda 是可以进行参数传递的,传递的方式如下代码所述:
def slice(x,index): return x[:,:,index]
如上,index是参数,通过字典将参数传递进去.
x1 = Lambda(slice,output_shape=(4,1),arguments={‘index‘:0})(a) x2 = Lambda(slice,output_shape=(4,1),arguments={‘index‘:1})(a)
3、上述代码实现的是,将矩阵的每一列提取出来,然后单独进行操作,最后在拼在一起。可视化的图如下所示。
参考:
https://blog.csdn.net/hewb14/article/details/53414068
https://blog.csdn.net/lujiandong1/article/details/54936185
https://keras-cn.readthedocs.io/en/latest/layers/core_layer/
以上是关于keras Lambda 层的主要内容,如果未能解决你的问题,请参考以下文章