2018.10.1 逻辑题训练

Posted qichunlin

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2018.10.1 逻辑题训练相关的知识,希望对你有一定的参考价值。

现在共有100匹马跟100块石头,马分3种,大型马;中型马跟小型马。其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头。问需要多少匹大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马).

解:设大型马有x匹,中型马有y匹,小型马有z匹,
根据题意可得:
    x+y+x=100?①
    3x+2y+ 12z=100②,


 ②×2-①得:5x+3y=100,

所以有y= 100-5x3 ,
因为x、y必须是正整数,
所以有:  x=17    y=5    z=78                  x=14   y=10  z=76 ,x=11  y=15  z=74 ,     x=8  y=20  z=72 ,     x=5  y=25  z=70 ,       x=2  y=30  z=68 ,


答:可能有:大型马17匹、5匹中型马,78匹小型马;
大型马14匹、10匹中型马,76匹小型马;
大型马11匹、15匹中型马,74匹小型马;
大型马8匹、20匹中型马,72匹小型马;
大型马5匹、25匹中型马,70匹小型马;
大型马2匹、30匹中型马,68匹小型马;

假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。

  答:由满6向空5倒,剩1升,把这1升倒5里,然后6剩满,倒5里面,由于5里面有1升水,因此6只能向5倒4升水,然后将6剩余的2升,倒入空的5里面,再灌满6向5里倒3升,剩余3升。

周雯的妈妈是豫林水泥厂的化验员。一天,周雯来到化验室做作业。做完后想出去玩。"等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空 的。你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?"爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。请你想想看,"小机灵"是怎样做的?

  答:设杯子编号为ABCDEF,ABC为满,DEF为空,把B中的水倒进E中即可。

三个小伙子同时爱上了一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手枪进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最出色的枪手是小林,他从不失误,命中率 是100%。由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小李先开枪,小黄第二,小林最后。然后这样循环,直到他们只剩下一个人。那么这三个人中谁活下来的机会最大呢?他们都 应该采取什么样的策略?

  答:小林在轮到自己且小黄没死的条件下必杀黄,再跟菜鸟李单挑。所以黄在林没死的情况下必打林,否则自己必死。  小李经过计算比较(过程略),会决定自己先打小林。于是经计算,小李有873/2600≈33.6%的生机;

  小黄有109/260≈41.9%的生机;小林有24.5%的生机。哦,这样,那小李的第一枪会朝天开,以后当然是打敌人,谁活着打谁;

  小黄一如既往先打林,小林还是先干掉黄,冤家路窄啊!最后李,黄,林存活率约38:27:35;

  菜鸟活下来抱得美人归的几率大。
  李先放一空枪(如果合伙干中林,自己最吃亏)黄会选林打一枪(如不打林,自己肯定先玩完了)林会选黄打一枪(毕竟它命中率高)李黄对决0.3:0.28 0.4可能性李林对决0.3:0.60.6可能性成功率0.73

  李和黄打林李黄对决0.3:0.40.7*0.4可能性李林对决0.3:0.7*0.6*0.70.7*0.6可能性成功率0.64

一间囚房里关押着两个犯人。每天监狱都会为这间囚房提供一罐汤,让这两个犯人自己来分。起初,这两个人经常会发生争执,因为他们总是有人认为对方的汤比自己的多。后来他们找到了一个两 全其美的办法:一个人分汤,让另一个人先选。于是争端就这么解决了。可是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。必须寻找一个新的方法来维持他们之间的和平。该怎么办呢 ?注:心理问题,不是逻辑问题。


  答:让甲分汤,分好后由乙和丙按任意顺序给自己挑汤,剩余一碗留给甲。这样乙和丙两人的总和肯定是他们两人可拿到的最大。然后将他们两人的汤混合之后再按两人的方法再次分汤。

 五个大小相同的一元人民币硬币。要求两两相接触,应该怎么摆?

  答:底下放一个1,然后2 3放在1上面,另外的4 5竖起来放在1的上面。

 在一张长方形的桌面上放了n个一样大小的圆形硬币。这些硬币中可能有一些不完全在桌面内,也可能有一些彼此重叠;当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬 币重叠。请证明整个桌面可以用4n个硬币完全覆盖。

  答:要想让新放的硬币不与原先的硬币重叠,两个硬币的圆心距必须大于直径。也就是说,对于桌面上任意一点,到最近的圆心的距离都小于2,所以,整个桌面可以用n个半径为2的硬币覆盖。  把桌面和硬币的尺度都缩小一倍,那么,长、宽各是原桌面一半的小桌面,就可以用n个半径为1的硬币覆盖。那么,把原来的桌子分割成相等的4块小桌子,那么每块小桌子都可以用n个半径为1的硬币覆 盖,因此,整个桌面就可以用4n个半径为1的硬币覆盖。

一个球、一把长度大约是球的直径2/3长度的直尺。你怎样测出球的半径?方法很多,看看谁的比较巧妙

猜牌问题S先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4黑桃J、8、4、2、7、3草花K、Q、5、4、6方块A、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告 诉P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q先生:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,S先生听到如下的对话:P先生:我不知道这张牌。Q先生:我知道你 不知道这张牌。P先生:现在我知道这张牌了。Q先生:我也知道了。听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。请问:这张牌是什么牌?

  答:方块5

一个教授逻辑学的教授,有三个学生,而且三个学生均非常聪明!一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告诉他们,每个人的纸条上都写了一个正整数,且某两个数的和 等于第三个!(每个人可以看见另两个数,但看不见自己的)教授问第一个学生:你能猜出自己的数吗?回答:不能,问第二个,不能,第三个,不能,再问第一个,不能,第二个,不能,第三个:我 猜出来了,是144!教授很满意的笑了。请问您能猜出另外两个人的数吗?

  答:经过第一轮,说明任何两个数都是不同的。第二轮,前两个人没有猜出,说明任何一个数都不是其它数的两倍。现在有了以下几个条件:1.每个数大于02.两两不等3.任意一个数不是其他数的两倍。 每个数字可能是另两个之和或之差,第三个人能猜出144,必然根据前面三个条件排除了其中的一种可能。假设:是两个数之差,即x-y=144。这时1(x,y>0)和2(x!=y)都满足,所以要否定x+y 必然要使3不满足,即x+y=2y,解得x=y,不成立(不然第一轮就可猜出),所以不是两数之差。因此是两数之和,即x+y=144。同理,这时1,2都满足,必然要使3不满足,即x-y=2y,两方程联立 ,可得x=108,y=36。  这两轮猜的顺序其实分别为这样:第一轮(一号,二号),第二轮(三号,一号,二号)。这样分大家在每轮结束时获得的信息是相同的(即前面的三个条件)。

  那么就假设我们是C,来看看C是怎么做出来的:C看到的是A的36和B的108,因为条件,两个数的和是第三个,那么自己要么是72要么是144(猜到这个是因为72的话,108就是36和72的和,144的话就是 108和36的和。这样子这句话看不懂的举手):
  假设自己(C)是72的话,那么B在第二回合的时候就可以看出来,下面是如果C是72,B的思路:这种情况下,B看到的就是A的36和C的72,那么他就可以猜自己,是36或者是108(猜到这个是因为36的话 ,36加36等于72,108的话就是36和108的和):

  如果假设自己(B)头上是36,那么,C在第一回合的时候就可以看出来,下面是如果B是36,C的思路:这种情况下,C看到的就是A的36和B的36,那么他就可以猜自己,是72或者是0(这个不再解释了) :

  如果假设自己(C)头上是0,那么,A在第一回合的时候就可以看出来,下面是如果C是0,A的思路:这种情况下,A看到的就是B的36和C的0,那么他就可以猜自己,是36或者是36(这个不再解释了), 那他可以一口报出自己头上的36。(然后是逆推逆推逆推),现在A在第一回合没报出自己的36,C(在B的想象中)就可以知道自己头上不是0,如果其他和B的想法一样(指B头上是36),那么C在第一回 合就可以报出自己的72。现在C在第一回合没报出自己的36,B(在C的想象中)就可以知道自己头上不是36,如果其他和C的想法一样(指C头上是72),那么B在第二回合就可以报出自己的108。现在B在 第二回合没报出自己的108,C就可以知道自己头上不是72,那么C头上的唯一可能就是144了。

 某城市发生了一起汽车撞人逃跑事件,该城市只有两种颜色的车,蓝15%绿85%,事发时有一个人在现场看见了,他指证是蓝车,但是根据专家在现场分析,当时那种条件能看正确的可能性是80%那么 ,肇事的车是蓝车的概率到底是多少?

  答:15%*80%/(85%×20%+15%*80%)

 有一人有240公斤水,他想运往干旱地区赚钱。他每次最多携带60公斤,并且每前进一公里须耗水1公斤(均匀耗水)。假设水的价格在出发地为0,以后,与运输路程成正比,(即在10公里处为10 元/公斤,在20公里处为20元/公斤……),又假设他必须安全返回,请问,他最多可赚多少钱?

  答:f(x)=(60-2x)*x,当x=15时,有最大值450。450×4

  1=5,2=15,3=215,4=2145那么5=?

  答:因为1=5,所以5=1.

 有2n个人排队进电影院,票价是50美分。在这2n个人当中,其中n个人只有50美分,另外n个人有1美元(纸票子)。愚蠢的电影院开始卖票时1分钱也没有。问:有多少种排队方法使得每当一个拥 有1美元买票时,电影院都有50美分找钱。注:1美元=100美分拥有1美元的人,拥有的是纸币,没法破成2个50美分

  答:本题可用递归算法,但时间复杂度为2的n次方,也可以用动态规划法,时间复杂度为n的平方,实现起来相对要简单得多,但最方便的就是直接运用公式:排队的种数=(2n)!/[n!(n+1)!]。

以上是关于2018.10.1 逻辑题训练的主要内容,如果未能解决你的问题,请参考以下文章

逻辑训练题

逻辑思维训练550题

逻辑思维训练题

前方高能,阿里程序员面试逻辑训练题

机器学习 程序题

逻辑思维训练之假设法