OpenCV学习4-----K-Nearest Neighbors(KNN)demo
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了OpenCV学习4-----K-Nearest Neighbors(KNN)demo相关的知识,希望对你有一定的参考价值。
最近用到KNN方法,学习一下OpenCV给出的demo。
demo大意是随机生成两团二维空间中的点,然后在500*500的二维空间平面上,计算每一个点属于哪一个类,然后用红色和绿色显示出来每一个点
如下是一系demo里用到的相关函数。
运行效果:
红色背景应该是表示每一个像素的类别标签和红色的点的标签相同。同理,绿色背景表示绿色的像素与绿色的点是同一个类的。
demo.cpp:
#include "ml.h" #include "highgui.h" int main( int argc, char** argv ) { const int K = 10; int i, j, k, accuracy; float response; int train_sample_count = 100; CvRNG rng_state = cvRNG(-1); CvMat* trainData = cvCreateMat( train_sample_count, 2, CV_32FC1 ); CvMat* trainClasses = cvCreateMat( train_sample_count, 1, CV_32FC1 ); IplImage* img = cvCreateImage( cvSize( 500, 500 ), 8, 3 ); float _sample[2]; CvMat sample = cvMat( 1, 2, CV_32FC1, _sample ); cvZero( img ); CvMat trainData1, trainData2, trainClasses1, trainClasses2; // form the training samples cvGetRows( trainData, &trainData1, 0, train_sample_count/2 ); cvRandArr( &rng_state, &trainData1, CV_RAND_NORMAL, cvScalar(200,200), cvScalar(50,50) ); cvGetRows( trainData, &trainData2, train_sample_count/2, train_sample_count ); cvRandArr( &rng_state, &trainData2, CV_RAND_NORMAL, cvScalar(300,300), cvScalar(50,50) ); cvGetRows( trainClasses, &trainClasses1, 0, train_sample_count/2 ); cvSet( &trainClasses1, cvScalar(1) ); cvGetRows( trainClasses, &trainClasses2, train_sample_count/2, train_sample_count ); cvSet( &trainClasses2, cvScalar(2) ); // learn classifier CvKNearest knn( trainData, trainClasses, 0, false, K ); CvMat* nearests = cvCreateMat( 1, K, CV_32FC1); for( i = 0; i < img->height; i++ ) { for( j = 0; j < img->width; j++ ) { sample.data.fl[0] = (float)j; sample.data.fl[1] = (float)i; // estimate the response and get the neighbors‘ labels response = knn.find_nearest(&sample,K,0,0,nearests,0); // compute the number of neighbors representing the majority for( k = 0, accuracy = 0; k < K; k++ ) { if( nearests->data.fl[k] == response) accuracy++; } // highlight the pixel depending on the accuracy (or confidence) cvSet2D( img, i, j, response == 1 ? (accuracy > 5 ? CV_RGB(180,0,0) : CV_RGB(180,120,0)) : (accuracy > 5 ? CV_RGB(0,180,0) : CV_RGB(120,120,0)) ); } } // display the original training samples for( i = 0; i < train_sample_count/2; i++ ) { CvPoint pt; pt.x = cvRound(trainData1.data.fl[i*2]); pt.y = cvRound(trainData1.data.fl[i*2+1]); cvCircle( img, pt, 2, CV_RGB(255,0,0), CV_FILLED ); pt.x = cvRound(trainData2.data.fl[i*2]); pt.y = cvRound(trainData2.data.fl[i*2+1]); cvCircle( img, pt, 2, CV_RGB(0,255,0), CV_FILLED ); } cvNamedWindow( "classifier result", 1 ); cvShowImage( "classifier result", img ); cvWaitKey(0); cvReleaseMat( &trainClasses ); cvReleaseMat( &trainData ); return 0; }
参考:
https://docs.opencv.org/2.4/modules/ml/doc/k_nearest_neighbors.html
以上是关于OpenCV学习4-----K-Nearest Neighbors(KNN)demo的主要内容,如果未能解决你的问题,请参考以下文章