在Pandas中更改列的数据类型方法总结

Posted zknublx

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了在Pandas中更改列的数据类型方法总结相关的知识,希望对你有一定的参考价值。

先看一个非常简单的例子:

a = [[‘a‘, ‘1.2‘, ‘4.2‘], [‘b‘, ‘70‘, ‘0.03‘], [‘x‘, ‘5‘, ‘0‘]]
df = pd.DataFrame(a)


 

有什么方法可以将列转换为适当的类型?例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?理想情况下,希望以动态的方式做到这一点,因为可以有数百个列,明确指定哪些列是哪种类型太麻烦。可以假定每列都包含相同类型的值。

 

解决方法

可以用的方法简单列举如下:

对于创建DataFrame的情形

如果要创建一个DataFrame,可以直接通过dtype参数指定类型:

df = pd.DataFrame(a, dtype=‘float‘)  #示例1
df = pd.DataFrame(data=d, dtype=np.int8) #示例2
df = pd.read_csv("somefile.csv", dtype = {‘column_name‘ : str})

 

对于单列或者Series

下面是一个字符串Seriess的例子,它的dtype为object

技术分享图片
>>> s = pd.Series([‘1‘, ‘2‘, ‘4.7‘, ‘pandas‘, ‘10‘])
>>> s
0         1
1         2
2       4.7
3    pandas
4        10
dtype: object
技术分享图片

 

使用to_numeric转为数值。默认情况下,它不能处理字母型的字符串‘pandas‘:

>>> pd.to_numeric(s) # or pd.to_numeric(s, errors=‘raise‘)
ValueError: Unable to parse string

 

可以将无效值强制转换为NaN,如下所示:

技术分享图片
>>> pd.to_numeric(s, errors=‘coerce‘)
0     1.0
1     2.0
2     4.7
3     NaN
4    10.0
dtype: float64
技术分享图片

 

如果遇到无效值,第三个选项就是忽略该操作:

>>> pd.to_numeric(s, errors=‘ignore‘)
# the original Series is returned untouched

 

对于多列或者整个DataFrame

如果想要将这个操作应用到多个列,依次处理每一列是非常繁琐的,所以可以使用DataFrame.apply处理每一列。

对于某个DataFrame:

技术分享图片
>>> a = [[‘a‘, ‘1.2‘, ‘4.2‘], [‘b‘, ‘70‘, ‘0.03‘], [‘x‘, ‘5‘, ‘0‘]]
>>> df = pd.DataFrame(a, columns=[‘col1‘,‘col2‘,‘col3‘])
>>> df
  col1 col2  col3
0    a  1.2   4.2
1    b   70  0.03
2    x    5     0
技术分享图片

 

然后可以写:

df[[‘col2‘,‘col3‘]] = df[[‘col2‘,‘col3‘]].apply(pd.to_numeric)

 

那么‘col2‘和‘col3‘根据需要具有float64类型。

但是,可能不知道哪些列可以可靠地转换为数字类型。在这种情况下,设置参数:

df.apply(pd.to_numeric, errors=‘ignore‘)

 

然后该函数将被应用于整个DataFrame,可以转换为数字类型的列将被转换,而不能(例如,它们包含非数字字符串或日期)的列将被单独保留。

另外pd.to_datetimepd.to_timedelta可将数据转换为日期和时间戳

软转换——类型自动推断

版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型的DataFrame的列转换为更具体的类型。

例如,用两列对象类型创建一个DataFrame,其中一个保存整数,另一个保存整数的字符串:

>>> df = pd.DataFrame({‘a‘: [7, 1, 5], ‘b‘: [‘3‘,‘2‘,‘1‘]}, dtype=‘object‘)
>>> df.dtypes
a    object
b    object
dtype: object

 

然后使用infer_objects(),可以将列‘a‘的类型更改为int64:

>>> df = df.infer_objects()
>>> df.dtypes
a     int64
b    object
dtype: object

 

由于‘b‘的值是字符串,而不是整数,因此‘b‘一直保留。

astype强制转换

如果试图强制将两列转换为整数类型,可以使用df.astype(int)

 

示例如下:

技术分享图片
a = [[‘a‘, ‘1.2‘, ‘4.2‘], [‘b‘, ‘70‘, ‘0.03‘], [‘x‘, ‘5‘, ‘0‘]]
df = pd.DataFrame(a, columns=[‘one‘, ‘two‘, ‘three‘])
df
Out[16]: 
  one  two three
0   a  1.2   4.2
1   b   70  0.03
2   x    5     0

df.dtypes
Out[17]: 
one      object
two      object
three    object

df[[‘two‘, ‘three‘]] = df[[‘two‘, ‘three‘]].astype(float)

df.dtypes
Out[19]: 
one       object
two      float64
three    float64
技术分享图片

 


以上是关于在Pandas中更改列的数据类型方法总结的主要内容,如果未能解决你的问题,请参考以下文章

通过正则表达式选择列来更改 Pandas 列的数据类型

Pandas总结第六节 Pandas 添加列

使用 pandas 更改列数据类型

更改 Pandas 数据框的日期类型

pandas DataFrame行或列的删除方法

Pandas总结第五节 Pandas 数据查询方法总结_df.loc()总结