Intel DAAL AI鍔犻€熲€斺€旀敮鎸佷粠鏁版嵁棰勫鐞嗗埌妯″瀷棰勬祴锛屾暟鎹簮蹇呴』浣跨敤DAAL鐨勫簳灞傚皝瑁呭簱
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Intel DAAL AI鍔犻€熲€斺€旀敮鎸佷粠鏁版嵁棰勫鐞嗗埌妯″瀷棰勬祴锛屾暟鎹簮蹇呴』浣跨敤DAAL鐨勫簳灞傚皝瑁呭簱相关的知识,希望对你有一定的参考价值。
鏍囩锛?a href='http://www.mamicode.com/so/1/related' title='related'>related
guid art analysis mode int documents led ide鏁版嵁婧愬姞閫熻瀹樻柟鏂囨。锛堝繀椤讳娇鐢―AAL鑷繁鐨勫簱锛夛細
鍙互鐪嬪埌鏀寔鐨勬暟鎹簮锛氬悓鏁版嵁绫诲瀷鐨則able锛坢atrix锛夛紝涓嶅悓绫诲瀷鐨則able锛屼互鍙婁粠DB鏂囦欢鍙栨暟鎹€佹暟鎹簭鍒楀寲銆佸帇缂╃瓑銆?/p>
鍦ㄨ繖浜涘畾鍒剁殑鏁版嵁婧愪笂锛孖ntel DAAL浣跨敤鑷繁搴曞眰鐨凜PU杩涜纭欢鍔犻€燂紒涓嬮潰鎽樿嚜鍏跺畼鏂癸細
Intel DAAL addresses all stages of the data analytics pipeline: preprocessing, transformation, analysis, modeling, validation, and decision-making.
Intel DAAL is developed by the same team as the Intel? Math Kernel Library (Intel? MKL)鈥攖he leading math library in the world. This team works closely with Intel? processor architects to squeeze performance from Intel processor-based systems.
Specs at a Glance
Processors | Intel Atom?, Intel Core?, Intel? Xeon?, and Intel? Xeon Phi? processors and compatible processors |
Languages | Python*, C++, Java* |
Development Tools and Environments |
Microsoft Visual Studio* (Windows*) Eclipse* and CDT* (Linux*) |
Operating Systems | Use the same API for application development on multiple operating systems: Windows, Linux, and macOS* |
# file: low_order_moms_dense_batch.py #=============================================================================== # Copyright 2014-2018 Intel Corporation. # # This software and the related documents are Intel copyrighted materials, and # your use of them is governed by the express license under which they were # provided to you (License). Unless the License provides otherwise, you may not # use, modify, copy, publish, distribute, disclose or transmit this software or # the related documents without Intel鈥榮 prior written permission. # # This software and the related documents are provided as is, with no express # or implied warranties, other than those that are expressly stated in the # License. #=============================================================================== ## <a name="DAAL-EXAMPLE-PY-LOW_ORDER_MOMENTS_DENSE_BATCH"></a> ## example low_order_moms_dense_batch.py import os import sys from daal.algorithms import low_order_moments from daal.data_management import FileDataSource, DataSourceIface utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__)))) if utils_folder not in sys.path: sys.path.insert(0, utils_folder) from utils import printNumericTable DAAL_PREFIX = os.path.join(鈥?.鈥? 鈥榙ata鈥? # Input data set parameters dataFileName = os.path.join(DAAL_PREFIX, 鈥榖atch鈥? 鈥榗ovcormoments_dense.csv鈥? def printResults(res): printNumericTable(res.get(low_order_moments.minimum), "Minimum:") printNumericTable(res.get(low_order_moments.maximum), "Maximum:") printNumericTable(res.get(low_order_moments.sum), "Sum:") printNumericTable(res.get(low_order_moments.sumSquares), "Sum of squares:") printNumericTable(res.get(low_order_moments.sumSquaresCentered), "Sum of squared difference from the means:") printNumericTable(res.get(low_order_moments.mean), "Mean:") printNumericTable(res.get(low_order_moments.secondOrderRawMoment), "Second order raw moment:") printNumericTable(res.get(low_order_moments.variance), "Variance:") printNumericTable(res.get(low_order_moments.standardDeviation), "Standard deviation:") printNumericTable(res.get(low_order_moments.variation), "Variation:") if __name__ == "__main__": # Initialize FileDataSource to retrieve input data from .csv file dataSource = FileDataSource( dataFileName, DataSourceIface.doAllocateNumericTable, DataSourceIface.doDictionaryFromContext ) # Retrieve the data from input file dataSource.loadDataBlock() # Create algorithm for computing low order moments in batch processing mode algorithm = low_order_moments.Batch() # Set input arguments of the algorithm algorithm.input.set(low_order_moments.data, dataSource.getNumericTable()) # Get computed low order moments res = algorithm.compute() printResults(res)銆€銆€
以上是关于Intel DAAL AI鍔犻€熲€斺€旀敮鎸佷粠鏁版嵁棰勫鐞嗗埌妯″瀷棰勬祴锛屾暟鎹簮蹇呴』浣跨敤DAAL鐨勫簳灞傚皝瑁呭簱的主要内容,如果未能解决你的问题,请参考以下文章
带有 scikit-learn 的英特尔 daal4py 分类器