Intel DAAL AI鍔犻€熲€斺€旀敮鎸佷粠鏁版嵁棰勫鐞嗗埌妯″瀷棰勬祴锛屾暟鎹簮蹇呴』浣跨敤DAAL鐨勫簳灞傚皝瑁呭簱

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Intel DAAL AI鍔犻€熲€斺€旀敮鎸佷粠鏁版嵁棰勫鐞嗗埌妯″瀷棰勬祴锛屾暟鎹簮蹇呴』浣跨敤DAAL鐨勫簳灞傚皝瑁呭簱相关的知识,希望对你有一定的参考价值。

鏍囩锛?a href='http://www.mamicode.com/so/1/related' title='related'>related   guid   art   analysis   mode   int   documents   led   ide   

鏁版嵁婧愬姞閫熻瀹樻柟鏂囨。锛堝繀椤讳娇鐢―AAL鑷繁鐨勫簱锛夛細


Data Management

鍙互鐪嬪埌鏀寔鐨勬暟鎹簮锛氬悓鏁版嵁绫诲瀷鐨則able锛坢atrix锛夛紝涓嶅悓绫诲瀷鐨則able锛屼互鍙婁粠DB鏂囦欢鍙栨暟鎹€佹暟鎹簭鍒楀寲銆佸帇缂╃瓑銆?/p>

鍦ㄨ繖浜涘畾鍒剁殑鏁版嵁婧愪笂锛孖ntel DAAL浣跨敤鑷繁搴曞眰鐨凜PU杩涜纭欢鍔犻€燂紒涓嬮潰鎽樿嚜鍏跺畼鏂癸細

Intel DAAL addresses all stages of the data analytics pipeline: preprocessing, transformation, analysis, modeling, validation, and decision-making.

鎶€鏈垎浜浘鐗? title=

Intel DAAL is developed by the same team as the Intel? Math Kernel Library (Intel? MKL)鈥攖he leading math library in the world. This team works closely with Intel? processor architects to squeeze performance from Intel processor-based systems.

鎶€鏈垎浜浘鐗? src=

Specs at a Glance

 

Processors Intel Atom?, Intel Core?, Intel? Xeon?, and Intel? Xeon Phi? processors and compatible processors
Languages Python*, C++, Java*
Development Tools and Environments

Microsoft Visual Studio* (Windows*)

Eclipse* and CDT* (Linux*)

Operating Systems Use the same API for application development on multiple operating systems: Windows, Linux, and macOS*
缁熻鐗瑰緛鐨勮绠楀姞閫熶緥瀛愶細
 
 
# file: low_order_moms_dense_batch.py
#===============================================================================
# Copyright 2014-2018 Intel Corporation.
#
# This software and the related documents are Intel copyrighted  materials,  and
# your use of  them is  governed by the  express license  under which  they were
# provided to you (License).  Unless the License provides otherwise, you may not
# use, modify, copy, publish, distribute,  disclose or transmit this software or
# the related documents without Intel鈥榮 prior written permission.
#
# This software and the related documents  are provided as  is,  with no express
# or implied  warranties,  other  than those  that are  expressly stated  in the
# License.
#===============================================================================

## <a name="DAAL-EXAMPLE-PY-LOW_ORDER_MOMENTS_DENSE_BATCH"></a>
## example low_order_moms_dense_batch.py

import os
import sys

from daal.algorithms import low_order_moments
from daal.data_management import FileDataSource, DataSourceIface

utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
if utils_folder not in sys.path:
    sys.path.insert(0, utils_folder)
from utils import printNumericTable

DAAL_PREFIX = os.path.join(鈥?.鈥? 鈥榙ata鈥?

# Input data set parameters
dataFileName = os.path.join(DAAL_PREFIX, 鈥榖atch鈥? 鈥榗ovcormoments_dense.csv鈥?


def printResults(res):
    printNumericTable(res.get(low_order_moments.minimum),              "Minimum:")
    printNumericTable(res.get(low_order_moments.maximum),              "Maximum:")
    printNumericTable(res.get(low_order_moments.sum),                  "Sum:")
    printNumericTable(res.get(low_order_moments.sumSquares),           "Sum of squares:")
    printNumericTable(res.get(low_order_moments.sumSquaresCentered),   "Sum of squared difference from the means:")
    printNumericTable(res.get(low_order_moments.mean),                 "Mean:")
    printNumericTable(res.get(low_order_moments.secondOrderRawMoment), "Second order raw moment:")
    printNumericTable(res.get(low_order_moments.variance),             "Variance:")
    printNumericTable(res.get(low_order_moments.standardDeviation),    "Standard deviation:")
    printNumericTable(res.get(low_order_moments.variation),            "Variation:")

if __name__ == "__main__":

    # Initialize FileDataSource to retrieve input data from .csv file
    dataSource = FileDataSource(
        dataFileName,
        DataSourceIface.doAllocateNumericTable,
        DataSourceIface.doDictionaryFromContext
    )

    # Retrieve the data from input file
    dataSource.loadDataBlock()

    # Create algorithm for computing low order moments in batch processing mode
    algorithm = low_order_moments.Batch()

    # Set input arguments of the algorithm
    algorithm.input.set(low_order_moments.data, dataSource.getNumericTable())

    # Get computed low order moments
    res = algorithm.compute()

    printResults(res)銆€銆€


以上是关于Intel DAAL AI鍔犻€熲€斺€旀敮鎸佷粠鏁版嵁棰勫鐞嗗埌妯″瀷棰勬祴锛屾暟鎹簮蹇呴』浣跨敤DAAL鐨勫簳灞傚皝瑁呭簱的主要内容,如果未能解决你的问题,请参考以下文章

头文件可能存在英特尔 DAAL 问题?

英特尔 DAAL python 错误

带有 scikit-learn 的英特尔 daal4py 分类器

Intel收购深度学习公司Vertex.AI:整合入AI部门

Intel AI Cloud 使用