POJ - 1845 G - Sumdiv (唯一分解定理)

Posted lis-

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ - 1845 G - Sumdiv (唯一分解定理)相关的知识,希望对你有一定的参考价值。

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15

Hint

2^3 = 8. 
The natural divisors of 8 are: 1,2,4,8. Their sum is 15. 
15 modulo 9901 is 15 (that should be output). 
 
题意:输入A,B  求A^B的所有因子之和
 
思路: 首先求一个数的所有因子之和,我们就可以使用我们的唯一分解定理
(1+p1^1+p1^2+p1^3...p1^n)*(1+p2^1.....p2^n)*...*(1+pn^1+....+pn^n)
然后每一个括号里面我们可以用一个等比数列公式来求得 
a1*(1-q^n)/(1-q)    
不过既然我们要用除法,那我们为了保证精确度肯定要求逆元,还有求q^n的时候,因为范围比较大,你就要使用快速幂求得
这也说了,这是一个数的所有因子之和,
题目所求得是   A^B的所有因子之和,所以你要想想,因为数据比较大所以我们不能直接求解,这样取模容易丢失精度
运用算术基本原理  4^6=(2^2) ^6=2^12
所以可以直接算出素因子时直接个数乘以幂数即可
 
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#define mod 9901
#define MAX 1001
using namespace std;
typedef long long ll;
int cnt;
vector<ll> prime;
vector<ll> times;
ll qpow(ll a,ll b)//快速幂加快求幂数
{
    ll ans=1;
    while(b)
    {
        if(b&1) ans=(ans*a)%mod;
        b>>=1;
        a=(a*a)%mod;
    }
    return ans;
}
void divide(ll n) {//求出n里所有的素数银子
    for(ll i=2;i*i<=n;++i) {
        if(n%i==0) {
            prime.push_back(i);ll cnt=0;
            while(n%i==0) {n/=i;++cnt;}
            times.push_back(cnt);
        }
    }
    if(n>1) {prime.push_back(n);times.push_back(1);}
}
int main()
{
    ll a,b;
    scanf("%lld%lld",&a,&b);
    divide(a);
    ll ans=1;
    for(int i=0,end=prime.size();i<end;++i) {
        times[i]*=b;//乘了括号外的乘方
        if((prime[i]-1)%mod==0) ans=ans*(times[i]+1)%mod;//当底数为1时,就是乘以项数
        else ans=ans*((qpow(prime[i],times[i]+1)-1+mod)*qpow(prime[i]-1,mod-2)%mod)%mod;//等比数列公式
    }
    printf("%lld
",ans);
    return 0;
}

 



以上是关于POJ - 1845 G - Sumdiv (唯一分解定理)的主要内容,如果未能解决你的问题,请参考以下文章

POJ_1845_Sumdiv

Sumdiv POJ - 1845

poj1845 Sumdiv

poj_1845_Sumdiv

POJ1845 Sumdiv [数论,逆元]

POJ 1845 Sumdiv#质因数分解+二分