TensorFlow activatefunction 和可视化

Posted francischeng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TensorFlow activatefunction 和可视化相关的知识,希望对你有一定的参考价值。

# View more python learning tutorial on my Youtube and Youku channel!!!

# Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg
# Youku video tutorial: http://i.youku.com/pythontutorial

"""
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
"""
from __future__ import print_function
import tensorflow as tf


def add_layer(inputs, in_size, out_size, activation_function=None):
    # add one more layer and return the output of this layer
    with tf.name_scope(layer):
        with tf.name_scope(weights):
            Weights = tf.Variable(tf.random_normal([in_size, out_size]), name=W)
        with tf.name_scope(biases):
            biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name=b)
        with tf.name_scope(Wx_plus_b):
            Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b, )
        return outputs


# define placeholder for inputs to network
with tf.name_scope(inputs):
    xs = tf.placeholder(tf.float32, [None, 1], name=x_input)
    ys = tf.placeholder(tf.float32, [None, 1], name=y_input)

# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)

# the error between prediciton and real data
with tf.name_scope(loss):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                        reduction_indices=[1]))

with tf.name_scope(train):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

sess = tf.Session()

# tf.train.SummaryWriter soon be deprecated, use following
if int((tf.__version__).split(.)[1]) < 12 and int((tf.__version__).split(.)[0]) < 1:  # tensorflow version < 0.12
    writer = tf.train.SummaryWriter(logs/, sess.graph)  # 把整个框架logging到一个文件中去
else:  # tensorflow version >= 0.12
    writer = tf.summary.FileWriter("logs/", sess.graph)

# tf.initialize_all_variables() no long valid from
# 2017-03-02 if using tensorflow >= 0.12
if int((tf.__version__).split(.)[1]) < 12 and int((tf.__version__).split(.)[0]) < 1:
    init = tf.initialize_all_variables()
else:
    init = tf.global_variables_initializer()
sess.run(init)

# direct to the local dir and run this in terminal:
# $ tensorboard --logdir=logs

技术分享图片

技术分享图片

技术分享图片

 

以上是关于TensorFlow activatefunction 和可视化的主要内容,如果未能解决你的问题,请参考以下文章

如何让 Tensorflow Profiler 在 Tensorflow 2.5 中使用“tensorflow-macos”和“tensorflow-metal”工作

python [test tensorflow] test tensorflow installation #tensorflow

关于tensorflow的显存占用问题

java调用tensorflow训练好的模型

tensorflow新手必看,tensorflow入门教程,tensorflow示例代码

tensorflow 如何在线训练模型