TensorFlow activatefunction 和可视化

Posted francischeng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TensorFlow activatefunction 和可视化相关的知识,希望对你有一定的参考价值。

# View more python learning tutorial on my Youtube and Youku channel!!!

# Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg
# Youku video tutorial: http://i.youku.com/pythontutorial

"""
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
"""
from __future__ import print_function
import tensorflow as tf
import numpy as np


def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
    # add one more layer and return the output of this layer
    layer_name = layer%s % n_layer
    with tf.name_scope(layer_name):
        with tf.name_scope(weights):
            Weights = tf.Variable(tf.random_normal([in_size, out_size]), name=W)
            tf.summary.histogram(layer_name + /weights, Weights)
        with tf.name_scope(biases):
            biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name=b)
            tf.summary.histogram(layer_name + /biases, biases)
        with tf.name_scope(Wx_plus_b):
            Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b, )
        tf.summary.histogram(layer_name + /outputs, outputs)
    return outputs


# Make up some real data
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

# define placeholder for inputs to network
with tf.name_scope(inputs):
    xs = tf.placeholder(tf.float32, [None, 1], name=x_input)
    ys = tf.placeholder(tf.float32, [None, 1], name=y_input)

# add hidden layer
l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)

# the error between prediciton and real data
with tf.name_scope(loss):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                        reduction_indices=[1]))
    tf.summary.scalar(loss, loss)

with tf.name_scope(train):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

sess = tf.Session()
merged = tf.summary.merge_all()

writer = tf.summary.FileWriter("logs/", sess.graph)

init = tf.global_variables_initializer()
sess.run(init)

for i in range(1000):
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    if i % 50 == 0:
        result = sess.run(merged,
                          feed_dict={xs: x_data, ys: y_data})
        writer.add_summary(result, i)

# direct to the local dir and run this in terminal:
# $ tensorboard --logdir logs

技术分享图片

技术分享图片

技术分享图片

技术分享图片

 

以上是关于TensorFlow activatefunction 和可视化的主要内容,如果未能解决你的问题,请参考以下文章

如何让 Tensorflow Profiler 在 Tensorflow 2.5 中使用“tensorflow-macos”和“tensorflow-metal”工作

python [test tensorflow] test tensorflow installation #tensorflow

关于tensorflow的显存占用问题

java调用tensorflow训练好的模型

tensorflow新手必看,tensorflow入门教程,tensorflow示例代码

tensorflow 如何在线训练模型